ColossalAI/colossalai/fx/tracer/meta_patch/patched_function/arithmetic.py

86 lines
2.8 KiB
Python
Raw Normal View History

import torch
from ...registry import meta_patched_function
@meta_patched_function.register(torch.matmul)
@meta_patched_function.register('matmul') # for built-in op @
def torch_matmul(input, other, *, out=None):
# copied from huggingface.utils.fx
d1 = input.dim()
d2 = other.dim()
shape = None
if d1 == 1 and d2 == 1:
shape = None
elif d1 == 2 and d2 == 2:
shape = (input.size(0), other.size(1))
elif d1 == 1 and d2 == 2:
shape = (other.size(1),)
elif d1 == 2 and d2 == 1:
shape = (input.size(0),)
else:
max_length = max(input.dim(), other.dim())
shape1 = list(input.shape)
shape2 = list(other.shape)
if d1 == 1:
shape1 = [1] + shape1
if d2 == 1:
shape2.append(1)
shape1 = [-1] * (max_length - d1) + list(input.shape)
shape2 = [-1] * (max_length - d2) + list(other.shape)
shape = []
for i in range(max_length):
shape.append(max(shape1[i], shape2[i]))
shape[-2] = shape1[-2]
shape[-1] = shape2[-1]
if d1 == 1:
shape.pop(-2)
if d2 == 1:
shape.pop(-1)
if shape is None:
return torch.tensor(0.0, device="meta")
return torch.empty(*shape, device="meta")
@meta_patched_function.register(torch.abs)
def torch_abs(input, *, out=None):
assert out is None, 'out is not supported yet'
return torch.empty(input.shape, device='meta')
@meta_patched_function.register(torch.bmm)
def torch_bmm(input, mat2, *, out=None):
if out is not None:
raise ValueError("Don't support in-place abs for MetaTensor analysis")
batch_size, n, m = input.shape
_, _, p = mat2.shape
return torch.empty(batch_size, n, p, device="meta")
@meta_patched_function.register(torch.nn.functional.linear)
def torch_linear(input, mat2, bias=None, *, out=None):
if out is not None:
raise ValueError("Don't support in-place abs for MetaTensor analysis")
output_shape = list(input.shape)
output_feature = list(mat2.shape)[0]
output_shape[-1] = output_feature
return torch.empty(*output_shape, device="meta")
@meta_patched_function.register(torch.addbmm)
@meta_patched_function.register(torch.Tensor.addbmm)
def torch_addbmm(input, mat1, mat2, *, beta=1, alpha=1, out=None):
if out is not None:
raise ValueError("Don't support in-place abs for MetaTensor analysis")
batch_size, n, m = mat1.shape
_, _, p = mat2.shape
return torch.empty(n, p, device="meta")
@meta_patched_function.register(torch.var_mean)
def torch_var_mean(input, dim, unbiased=True, keepdim=False, *, out=None):
assert out is None, 'saving to out is not supported yet'
var = torch.empty(1).squeeze(0).to('meta')
mean = torch.empty(1).squeeze(0).to('meta')
return var, mean