mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] added addbmm handler (#1751)
parent
980ed21723
commit
262652c8bc
|
@ -1,5 +1,5 @@
|
|||
from .batch_norm_handler import BatchNormModuleHandler
|
||||
from .bmm_handler import BMMFunctionHandler
|
||||
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
|
||||
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
|
||||
from .layer_norm_handler import LayerNormModuleHandler
|
||||
from .linear_handler import LinearFunctionHandler, LinearModuleHandler
|
||||
|
@ -12,7 +12,8 @@ from .unary_elementwise_handler import UnaryElementwiseHandler
|
|||
from .where_handler import WhereHandler
|
||||
|
||||
__all__ = [
|
||||
'LinearFunctionHandler', 'LinearModuleHandler', 'BMMFunctionHandler', 'LayerNormModuleHandler',
|
||||
'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler', 'UnaryElementwiseHandler', 'ReshapeHandler',
|
||||
'PlacehodlerHandler', 'OuputHandler', 'WhereHandler', 'NormPoolingHandler', 'operator_registry'
|
||||
'LinearFunctionHandler', 'LinearModuleHandler', 'BMMFunctionHandler', 'AddBMMFunctionHandler',
|
||||
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
|
||||
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
|
||||
'NormPoolingHandler', 'operator_registry'
|
||||
]
|
||||
|
|
|
@ -1,33 +1,97 @@
|
|||
from typing import Dict, List
|
||||
from typing import Dict, List, Union
|
||||
|
||||
import torch
|
||||
|
||||
from ..sharding_strategy import OperationData, OperationDataType
|
||||
from ..sharding_strategy import OperationData, OperationDataType, ShardingStrategy
|
||||
from ..utils import recover_sharding_spec_for_broadcast_shape
|
||||
from .node_handler import NodeHandler
|
||||
from .registry import operator_registry
|
||||
from .strategy import BatchedMatMulStrategyGenerator, StrategyGenerator
|
||||
|
||||
__all__ = ['BMMFunctionHandler', 'AddBMMFunctionHandler']
|
||||
|
||||
|
||||
def _get_data_mapping_for_bmm_op(node, input_idx, other_idx, bias_idx=None):
|
||||
"""
|
||||
This function is a helper function which extracts the common logic for both `bmm` and `addbmm`
|
||||
node handler to reduce code redundancy.
|
||||
"""
|
||||
# input operand
|
||||
physical_input_operand = OperationData(name=str(node.args[input_idx]),
|
||||
type=OperationDataType.ARG,
|
||||
data=node.args[input_idx]._meta_data)
|
||||
|
||||
# other operand
|
||||
physical_other_operand = OperationData(name=str(node.args[other_idx]),
|
||||
type=OperationDataType.ARG,
|
||||
data=node.args[other_idx]._meta_data)
|
||||
|
||||
# output
|
||||
physical_output = OperationData(name=str(node), type=OperationDataType.OUTPUT, data=node._meta_data)
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
|
||||
if bias_idx is not None:
|
||||
# bias physical shape
|
||||
bias_logical_shape = node._meta_data.shape
|
||||
physical_bias_operand = OperationData(name=str(node.args[bias_idx]),
|
||||
type=OperationDataType.ARG,
|
||||
data=node.args[bias_idx]._meta_data,
|
||||
logical_shape=bias_logical_shape)
|
||||
mapping['bias'] = physical_bias_operand
|
||||
return mapping
|
||||
|
||||
|
||||
@operator_registry.register(torch.bmm)
|
||||
@operator_registry.register(torch.Tensor.bmm)
|
||||
class BMMFunctionHandler(NodeHandler):
|
||||
"""
|
||||
This is a NodeHandler class which deals with the batched matrix multiplication operation in PyTorch.
|
||||
Such operations including `torch.bmm` and `torch.Tensor.bmm` require the tensor to be 3D, thus, there is
|
||||
no logical-physical shape conversion in this handler.
|
||||
"""
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data)
|
||||
|
||||
physical_other_operand = OperationData(name=str(self.node.args[1]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[1]._meta_data)
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
mapping = _get_data_mapping_for_bmm_op(node=self.node, input_idx=0, other_idx=1)
|
||||
return mapping
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
generators = []
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(BatchedMatMulStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
|
||||
@operator_registry.register(torch.addbmm)
|
||||
@operator_registry.register(torch.Tensor.addbmm)
|
||||
class AddBMMFunctionHandler(NodeHandler):
|
||||
"""
|
||||
This is a NodeHandler class which deals with the addition + batched matrix multiplication operation in PyTorch.
|
||||
Such operations including `torch.addbmm` and `torch.Tensor.addbmm` require the two matmul tensor to be 3D. However, due to the
|
||||
addition, logical-physical shape conversion is required for the bias term.
|
||||
|
||||
As the addbmm operation will reduce the batch dimension, the bias is maximum 2D.
|
||||
"""
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
mapping = _get_data_mapping_for_bmm_op(node=self.node, input_idx=1, other_idx=2, bias_idx=0)
|
||||
return mapping
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(BatchedMatMulStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy) -> Union[ShardingStrategy, List[ShardingStrategy]]:
|
||||
# convert bias from its logical sharding spec to its physical sharding spec
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
|
||||
if 'bias' in op_data_mapping:
|
||||
bias_op_data = op_data_mapping['bias']
|
||||
bias_physical_shape = bias_op_data.data.shape
|
||||
bias_logical_shape = bias_op_data.logical_shape
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name(bias_op_data.name)
|
||||
bias_sharding_spec = recover_sharding_spec_for_broadcast_shape(bias_sharding_spec, bias_logical_shape,
|
||||
bias_physical_shape)
|
||||
strategy.sharding_specs[bias_op_data] = bias_sharding_spec
|
||||
return strategy
|
||||
|
|
|
@ -514,23 +514,60 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
|
||||
A batched matrix multiplication can be viewed as
|
||||
[b, i, k] x [b, k, j] -> [b, i, j]
|
||||
|
||||
The bias term is considered to have a 2D logical shape.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.squeeze_batch_dim = False
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def _pop_batch_dim_sharding_for_output(self, dim_partition_dict):
|
||||
# remove partition dict for dim 0
|
||||
dim_partition_dict['output'].pop(0, None)
|
||||
|
||||
# decrease the remaining dim index by 1
|
||||
temp_dim_partition = {}
|
||||
keys = list(dim_partition_dict['output'].keys())
|
||||
for key in keys:
|
||||
val = dim_partition_dict['output'].pop(key)
|
||||
temp_dim_partition[key - 1] = val
|
||||
dim_partition_dict['output'].update(temp_dim_partition)
|
||||
|
||||
def validate(self) -> bool:
|
||||
input_op_data = self.op_data['input']
|
||||
other_op_data = self.op_data['other']
|
||||
assert input_op_data.data.dim() > 2 or other_op_data.data.dim() > 2
|
||||
assert input_op_data.data.dim() == 3 or other_op_data.data.dim() == 3
|
||||
|
||||
if 'bias' in self.op_data:
|
||||
bias_op_data = self.op_data['bias']
|
||||
assert bias_op_data.data.dim() < 3 and len(bias_op_data.logical_shape) == 2
|
||||
|
||||
if self.op_data['output'].data.dim() == 2:
|
||||
# addbmm will shrink the first batch dim
|
||||
self.squeeze_batch_dim = True
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy) -> ShardingStrategy:
|
||||
return self.op_data['input'].data.shape[-1] * reduce(operator.mul, self.op_data['output'].data.shape)
|
||||
fwd_compute_cost = self.op_data['input'].data.shape[-1] * reduce(operator.mul,
|
||||
self.op_data['output'].data.shape)
|
||||
bwd_compute_cost = fwd_compute_cost * 2
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
|
||||
bwd=bwd_compute_cost,
|
||||
total=fwd_compute_cost + bwd_compute_cost)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_one_batch_dim(self, mesh_dim):
|
||||
name = f'Sb{mesh_dim} = Sb{mesh_dim} x Sb{mesh_dim}'
|
||||
|
||||
# get sharding_spec
|
||||
dim_partition_dict = {"input": {0: [mesh_dim]}, "other": {0: [mesh_dim]}, "bias": {}, "output": {0: [mesh_dim]}}
|
||||
if self.squeeze_batch_dim:
|
||||
self._pop_batch_dim_sharding_for_output(dim_partition_dict)
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict)
|
||||
|
||||
print(sharding_spec_mapping)
|
||||
|
||||
# get communication actions
|
||||
communication_action_mapping = {}
|
||||
if self.has_bias:
|
||||
|
@ -543,6 +580,7 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_two_batch_dim(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'Sb{mesh_dim_0}{mesh_dim_1} = Sb{mesh_dim_0}{mesh_dim_1} x Sb{mesh_dim_0}{mesh_dim_1}'
|
||||
dim_partition_dict = {
|
||||
|
@ -557,6 +595,8 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
0: [mesh_dim_0, mesh_dim_1]
|
||||
}
|
||||
}
|
||||
if self.squeeze_batch_dim:
|
||||
self._pop_batch_dim_sharding_for_output(dim_partition_dict)
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict)
|
||||
|
||||
# get communication actions
|
||||
|
@ -572,22 +612,27 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_batch_dim_lhs_space(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'Sb{mesh_dim_0}Si{mesh_dim_1} = Sb{mesh_dim_0}Si{mesh_dim_1} x Sb{mesh_dim_0}'
|
||||
dim_partition_dict = {
|
||||
"input": {
|
||||
0: [mesh_dim_0],
|
||||
-2: [mesh_dim_1]
|
||||
1: [mesh_dim_1]
|
||||
},
|
||||
"other": {
|
||||
0: [mesh_dim_0]
|
||||
},
|
||||
"bias": {},
|
||||
"bias": {
|
||||
0: [mesh_dim_1]
|
||||
},
|
||||
"output": {
|
||||
0: [mesh_dim_0],
|
||||
-2: [mesh_dim_1]
|
||||
1: [mesh_dim_1]
|
||||
}
|
||||
}
|
||||
if self.squeeze_batch_dim:
|
||||
self._pop_batch_dim_sharding_for_output(dim_partition_dict)
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict)
|
||||
|
||||
# get communication actions
|
||||
|
@ -609,6 +654,7 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_batch_dim_rhs_space(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'Sb{mesh_dim_0}Sj{mesh_dim_1} = Sb{mesh_dim_0}R x Sb{mesh_dim_0}Sj{mesh_dim_1}'
|
||||
dim_partition_dict = {
|
||||
|
@ -617,16 +663,18 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
},
|
||||
"other": {
|
||||
0: [mesh_dim_0],
|
||||
-1: [mesh_dim_1]
|
||||
2: [mesh_dim_1]
|
||||
},
|
||||
"bias": {
|
||||
-1: [mesh_dim_1]
|
||||
1: [mesh_dim_1]
|
||||
},
|
||||
"output": {
|
||||
0: [mesh_dim_0],
|
||||
-1: [mesh_dim_1]
|
||||
2: [mesh_dim_1]
|
||||
}
|
||||
}
|
||||
if self.squeeze_batch_dim:
|
||||
self._pop_batch_dim_sharding_for_output(dim_partition_dict)
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict)
|
||||
|
||||
# get communication actions
|
||||
|
@ -648,6 +696,7 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_batch_dim_both_contract(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'Sb{mesh_dim_0}R = Sb{mesh_dim_0}Sk{mesh_dim_1} x Sb{mesh_dim_0}Sk{mesh_dim_1}'
|
||||
dim_partition_dict = {
|
||||
|
@ -664,6 +713,8 @@ class BatchedMatMulStrategyGenerator(MatMulStrategyGenerator):
|
|||
0: [mesh_dim_0],
|
||||
}
|
||||
}
|
||||
if self.squeeze_batch_dim:
|
||||
self._pop_batch_dim_sharding_for_output(dim_partition_dict)
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict)
|
||||
|
||||
# get communication actions
|
||||
|
|
|
@ -4,7 +4,6 @@ from functools import reduce
|
|||
from typing import Any, Dict, List, Union
|
||||
|
||||
import torch
|
||||
|
||||
from torch.fx import Node
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
|
@ -15,11 +14,9 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
|||
ShardingStrategy,
|
||||
TrainCycleItem,
|
||||
)
|
||||
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec, ShapeConsistencyManager
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
from torch.fx import Node
|
||||
|
||||
|
||||
class StrategyGenerator(ABC):
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
import torch
|
||||
from enum import Enum, auto
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
__all__ = ['BroadcastType', 'is_broadcastable', 'get_broadcast_shape', 'recover_sharding_spec_for_broadcast_shape']
|
||||
|
@ -56,6 +58,9 @@ def recover_sharding_spec_for_broadcast_shape(logical_sharding_spec: ShardingSpe
|
|||
logical_num_dims = len(logical_shape)
|
||||
physical_num_dims = len(physical_shape)
|
||||
|
||||
assert logical_num_dims >= physical_num_dims, \
|
||||
'The number of dimensions in the logical shape is smaller than that of the physical shape, this tensor is not broadcast!'
|
||||
|
||||
# track the dim and its broadcasting type
|
||||
logical_dim_broadcast_info = {}
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import torch
|
||||
|
||||
from ..registry import meta_patched_function
|
||||
|
||||
|
||||
|
@ -56,6 +57,16 @@ def torch_bmm(input, mat2, *, out=None):
|
|||
return torch.empty(batch_size, n, p, device="meta")
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.addbmm)
|
||||
@meta_patched_function.register(torch.Tensor.addbmm)
|
||||
def torch_addbmm(input, mat1, mat2, *, beta=1, alpha=1, out=None):
|
||||
if out is not None:
|
||||
raise ValueError("Don't support in-place abs for MetaTensor analysis")
|
||||
batch_size, n, m = mat1.shape
|
||||
_, _, p = mat2.shape
|
||||
return torch.empty(n, p, device="meta")
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.var_mean)
|
||||
def torch_var_mean(input, dim, unbiased=True, keepdim=False, *, out=None):
|
||||
assert out is None, 'saving to out is not supported yet'
|
||||
|
|
|
@ -0,0 +1,189 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import AddBMMFunctionHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.testing import parameterize
|
||||
|
||||
|
||||
class AddBMMTensorMethodModule(nn.Module):
|
||||
|
||||
def forward(self, bias, x1, x2):
|
||||
return bias.addbmm(x1, x2)
|
||||
|
||||
|
||||
class AddBMMTorchFunctionModule(nn.Module):
|
||||
|
||||
def forward(self, bias, x1, x2):
|
||||
return torch.addbmm(bias, x1, x2)
|
||||
|
||||
|
||||
@parameterize('module', [AddBMMTorchFunctionModule, AddBMMTensorMethodModule])
|
||||
@parameterize('bias_shape', [[8], [1, 8], [8, 8]])
|
||||
def test_2d_device_mesh(module, bias_shape):
|
||||
|
||||
model = module()
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
'bias': torch.rand(*bias_shape).to('meta'),
|
||||
"x1": torch.rand(4, 8, 16).to('meta'),
|
||||
'x2': torch.rand(4, 16, 8).to('meta')
|
||||
})
|
||||
print(graph)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
linear_mod_node = list(graph.nodes)[3]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = AddBMMFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "x1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 8, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 8, 16])
|
||||
|
||||
assert mapping['other'].name == "x2"
|
||||
assert mapping['other'].data.is_meta
|
||||
assert mapping['other'].data.shape == torch.Size([4, 16, 8])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([4, 16, 8])
|
||||
|
||||
assert mapping['bias'].name == "bias"
|
||||
assert mapping['bias'].data.is_meta
|
||||
assert mapping['bias'].data.shape == torch.Size(bias_shape)
|
||||
assert mapping['bias'].type == OperationDataType.ARG
|
||||
assert mapping['bias'].logical_shape == torch.Size([8, 8])
|
||||
|
||||
assert mapping['output'].name == "addbmm"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([8, 8])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# one batch dim
|
||||
assert 'Sb0 = Sb0 x Sb0' not in strategy_name_list
|
||||
|
||||
# two batch dim
|
||||
assert 'Sb01 = Sb01 x Sb01' in strategy_name_list
|
||||
|
||||
# SbSi = SbSi x Sb
|
||||
assert 'Sb0Si1 = Sb0Si1 x Sb0' in strategy_name_list
|
||||
assert 'Sb1Si0 = Sb1Si0 x Sb1' in strategy_name_list
|
||||
|
||||
# SbSj = SbR x SbSj
|
||||
assert 'Sb0Sj1 = Sb0R x Sb0Sj1' in strategy_name_list
|
||||
assert 'Sb1Sj0 = Sb1R x Sb1Sj0' in strategy_name_list
|
||||
|
||||
# SbR = SbSk x SbSk
|
||||
assert 'Sb0R = Sb0Sk1 x Sb0Sk1' in strategy_name_list
|
||||
assert 'Sb1R = Sb1Sk0 x Sb1Sk0' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('x1')
|
||||
other_sharding_spec = strategy.get_sharding_spec_by_name('x2')
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name('bias')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('addbmm')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert input_sharding_spec.sharding_sequence[1] == output_sharding_spec.sharding_sequence[0]
|
||||
assert other_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1]
|
||||
assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
@parameterize('module', [AddBMMTorchFunctionModule, AddBMMTensorMethodModule])
|
||||
@parameterize('bias_shape', [[8], [1, 8], [8, 8]])
|
||||
def test_1d_device_mesh(module, bias_shape):
|
||||
model = module()
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
'bias': torch.rand(*bias_shape).to('meta'),
|
||||
"x1": torch.rand(4, 8, 16).to('meta'),
|
||||
'x2': torch.rand(4, 16, 8).to('meta')
|
||||
})
|
||||
print(graph)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (1, 4)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
linear_mod_node = list(graph.nodes)[3]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = AddBMMFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "x1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 8, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 8, 16])
|
||||
|
||||
assert mapping['other'].name == "x2"
|
||||
assert mapping['other'].data.is_meta
|
||||
assert mapping['other'].data.shape == torch.Size([4, 16, 8])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([4, 16, 8])
|
||||
|
||||
assert mapping['bias'].name == "bias"
|
||||
assert mapping['bias'].data.is_meta
|
||||
assert mapping['bias'].data.shape == torch.Size(bias_shape)
|
||||
assert mapping['bias'].type == OperationDataType.ARG
|
||||
assert mapping['bias'].logical_shape == torch.Size([8, 8])
|
||||
|
||||
assert mapping['output'].name == "addbmm"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([8, 8])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
assert len(strategy_name_list) == 1
|
||||
# one batch dim
|
||||
assert 'Sb0 = Sb0 x Sb0' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('x1')
|
||||
other_sharding_spec = strategy.get_sharding_spec_by_name('x2')
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name('bias')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('addbmm')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert input_sharding_spec.sharding_sequence[1] == output_sharding_spec.sharding_sequence[0]
|
||||
assert other_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1]
|
||||
assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d_device_mesh()
|
||||
# test_2d_device_mesh()
|
|
@ -6,6 +6,7 @@ from colossalai.auto_parallel.tensor_shard.node_handler import BMMFunctionHandle
|
|||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.testing import parameterize
|
||||
|
||||
|
||||
class BMMTensorMethodModule(nn.Module):
|
||||
|
@ -20,7 +21,7 @@ class BMMTorchFunctionModule(nn.Module):
|
|||
return torch.bmm(x1, x2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
|
||||
@parameterize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
|
||||
def test_2d_device_mesh(module):
|
||||
|
||||
model = module()
|
||||
|
@ -95,12 +96,13 @@ def test_2d_device_mesh(module):
|
|||
output_sharding_spec = strategy.get_sharding_spec_by_name('bmm')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
print(input_sharding_spec.sharding_sequence, output_sharding_spec.sharding_sequence)
|
||||
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
|
||||
assert other_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1]
|
||||
assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
|
||||
@parameterize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
|
||||
def test_1d_device_mesh(module):
|
||||
model = module()
|
||||
tracer = ColoTracer()
|
||||
|
@ -165,7 +167,5 @@ def test_1d_device_mesh(module):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d_device_mesh(BMMTensorMethodModule)
|
||||
test_1d_device_mesh(BMMTorchFunctionModule)
|
||||
test_2d_device_mesh(BMMTensorMethodModule)
|
||||
test_2d_device_mesh(BMMTorchFunctionModule)
|
||||
test_1d_device_mesh()
|
||||
test_2d_device_mesh()
|
||||
|
|
Loading…
Reference in New Issue