2021-10-28 16:21:23 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
2022-01-07 05:22:22 +00:00
|
|
|
from typing import List, Tuple, Union
|
2021-10-28 16:21:23 +00:00
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
from colossalai.utils import get_current_device
|
2022-01-07 05:22:22 +00:00
|
|
|
from functools import reduce
|
|
|
|
import operator
|
|
|
|
from .utils import split_tensor_into_1d_equal_chunks, gather_split_1d_tensor
|
|
|
|
|
|
|
|
TensorShape = Union[torch.Size, List[int], Tuple[int]]
|
|
|
|
|
|
|
|
|
|
|
|
def _get_tensor_shape(tensor_shape: TensorShape, chunk_tensor: bool = False) -> Tuple[TensorShape, bool]:
|
|
|
|
"""get the exact tensor shape when communicating and return whether the tensor is a chunk
|
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
|
|
|
tensor_shape (:class:`torch.Size`): shape of tensor
|
|
|
|
chunk_tensor (bool, optional): whether to chunk tensor, defaults to False
|
|
|
|
|
|
|
|
Returns:
|
2022-04-25 05:41:43 +00:00
|
|
|
Tuple[Union[:class:`torch.Size`, List[int], Tuple[int]], bool]: exact tensor shape, whether to chunk tensor
|
2022-01-07 05:22:22 +00:00
|
|
|
"""
|
|
|
|
if chunk_tensor:
|
|
|
|
tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1)
|
|
|
|
tensor_parallel_world_size = gpc.get_world_size(ParallelMode.TENSOR)
|
|
|
|
if tensor_chunk_shape % tensor_parallel_world_size == 0:
|
|
|
|
tensor_chunk_shape = tensor_chunk_shape // tensor_parallel_world_size
|
|
|
|
else:
|
|
|
|
tensor_chunk_shape = tensor_shape
|
|
|
|
chunk_tensor = False
|
|
|
|
else:
|
|
|
|
tensor_chunk_shape = tensor_shape
|
|
|
|
return tensor_chunk_shape, chunk_tensor
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
def create_recv_buffer_with_shapes(recv_shapes, dtype, scatter_gather_tensors):
|
|
|
|
if isinstance(recv_shapes, torch.Size):
|
|
|
|
recv_chunk_shape, recv_split = _get_tensor_shape(recv_shapes, scatter_gather_tensors)
|
|
|
|
buffer_recv = torch.empty(recv_chunk_shape, requires_grad=True, device=get_current_device(), dtype=dtype)
|
|
|
|
return buffer_recv, recv_split
|
|
|
|
buffer_recv = []
|
|
|
|
for recv_shape in recv_shapes:
|
|
|
|
recv_chunk_shape, recv_split = _get_tensor_shape(recv_shape, scatter_gather_tensors)
|
|
|
|
tensor_recv = torch.empty(recv_chunk_shape, requires_grad=True, device=get_current_device(), dtype=dtype)
|
|
|
|
buffer_recv.append(tensor_recv)
|
|
|
|
return buffer_recv, recv_split
|
|
|
|
|
|
|
|
|
|
|
|
def process_object_to_send(object_send, scatter_gather_tensors):
|
|
|
|
if isinstance(object_send, torch.Tensor):
|
|
|
|
send_split = _get_tensor_shape(object_send.shape, scatter_gather_tensors)[1]
|
|
|
|
if send_split:
|
|
|
|
object_send = split_tensor_into_1d_equal_chunks(object_send)
|
|
|
|
return object_send
|
2022-06-27 01:53:57 +00:00
|
|
|
|
|
|
|
object_send_list = []
|
2022-05-26 06:28:46 +00:00
|
|
|
for tensor_send in object_send:
|
|
|
|
send_split = _get_tensor_shape(tensor_send.shape, scatter_gather_tensors)[1]
|
|
|
|
if send_split:
|
2022-06-27 01:53:57 +00:00
|
|
|
object_send_list.append(split_tensor_into_1d_equal_chunks(tensor_send))
|
2022-06-28 06:41:11 +00:00
|
|
|
else:
|
|
|
|
object_send_list.append(tensor_send)
|
2022-06-27 01:53:57 +00:00
|
|
|
object_send = tuple(object_send_list)
|
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
return object_send
|
|
|
|
|
|
|
|
|
|
|
|
def filling_ops_queue(obj, comm_op, comm_rank, ops_queue):
|
|
|
|
if isinstance(obj, torch.Tensor):
|
|
|
|
op_to_add = dist.P2POp(comm_op, obj, comm_rank)
|
|
|
|
ops_queue.append(op_to_add)
|
|
|
|
else:
|
|
|
|
for tensor_to_comm in obj:
|
|
|
|
op_to_add = dist.P2POp(comm_op, tensor_to_comm, comm_rank)
|
|
|
|
ops_queue.append(op_to_add)
|
|
|
|
|
|
|
|
|
|
|
|
def _communicate(object_send_next: Union[torch.Tensor, List[torch.Tensor]] = None,
|
|
|
|
object_send_prev: Union[torch.Tensor, List[torch.Tensor]] = None,
|
2022-04-25 05:41:43 +00:00
|
|
|
recv_prev: bool = False,
|
|
|
|
recv_next: bool = False,
|
2022-05-26 06:28:46 +00:00
|
|
|
recv_prev_shape: Union[torch.Size, List[torch.Size]] = None,
|
|
|
|
recv_next_shape: Union[torch.Size, List[torch.Size]] = None,
|
2022-04-25 05:41:43 +00:00
|
|
|
prev_rank: int = None,
|
|
|
|
next_rank: int = None,
|
|
|
|
dtype: torch.dtype = None,
|
2022-05-26 06:28:46 +00:00
|
|
|
scatter_gather_tensors: bool = False) -> Tuple[Union[torch.Tensor, List[torch.Tensor]]]:
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
|
|
|
Adapted from megatron.p2p_communication.
|
|
|
|
Communicate tensors between stages. Used as helper method in other
|
|
|
|
communication methods that are used in pipeline schedule.
|
|
|
|
Takes the following arguments:
|
2022-05-26 06:28:46 +00:00
|
|
|
object_send_next (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): tensor to send to next rank (no tensor sent if
|
2021-10-28 16:21:23 +00:00
|
|
|
set to None).
|
2022-05-26 06:28:46 +00:00
|
|
|
object_send_prev (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): tensor to send to prev rank (no tensor sent if
|
2021-10-28 16:21:23 +00:00
|
|
|
set to None).
|
2022-04-25 05:41:43 +00:00
|
|
|
recv_prev (bool): boolean for whether tensor should be received from
|
2021-10-28 16:21:23 +00:00
|
|
|
previous rank.
|
2022-04-25 05:41:43 +00:00
|
|
|
recv_next (bool): boolean for whether tensor should be received from
|
2021-10-28 16:21:23 +00:00
|
|
|
next rank.
|
2023-04-26 03:38:43 +00:00
|
|
|
recv_prev_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): shape of the tensor to be received from the previous stage, defaults to None.
|
|
|
|
recv_next_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): shape of the tensor to be received from the next stage, defaults to None.
|
|
|
|
prev_rank (int): the rank of the previous pipeline stage, defaults to None,
|
|
|
|
next_rank (int): the rank of the next pipeline stage, defaults to None,
|
2022-04-25 05:41:43 +00:00
|
|
|
dtype (torch.dtype): data type of intermediate buffers, defaults to None
|
|
|
|
scatter_gather_tensors (bool): whether to scatter and gather tensor between pipeline stages, defaults to False
|
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Tuple[Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]]: returns tensor_recv_prev, tensor_recv_next
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
# Create placeholder tensors for receive in forward and backward directions
|
|
|
|
# if needed.
|
|
|
|
tensor_recv_prev = None
|
|
|
|
tensor_recv_next = None
|
|
|
|
|
|
|
|
if recv_prev:
|
|
|
|
assert recv_prev_shape is not None
|
2022-05-26 06:28:46 +00:00
|
|
|
tensor_recv_prev, recv_prev_split = create_recv_buffer_with_shapes(recv_prev_shape, dtype,
|
|
|
|
scatter_gather_tensors)
|
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
if recv_next:
|
|
|
|
assert recv_next_shape is not None
|
2022-05-26 06:28:46 +00:00
|
|
|
tensor_recv_next, recv_next_split = create_recv_buffer_with_shapes(recv_next_shape, dtype,
|
|
|
|
scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
if object_send_prev is not None or recv_prev:
|
2021-10-28 16:21:23 +00:00
|
|
|
if prev_rank is None:
|
2022-04-01 05:31:06 +00:00
|
|
|
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
if object_send_next is not None or recv_next:
|
2021-10-28 16:21:23 +00:00
|
|
|
if next_rank is None:
|
2022-04-01 05:31:06 +00:00
|
|
|
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
if object_send_prev is not None:
|
|
|
|
object_send_prev = process_object_to_send(object_send_prev, scatter_gather_tensors)
|
2022-01-07 05:22:22 +00:00
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
if object_send_next is not None:
|
|
|
|
object_send_next = process_object_to_send(object_send_next, scatter_gather_tensors)
|
2022-01-07 05:22:22 +00:00
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
ops = []
|
2022-05-26 06:28:46 +00:00
|
|
|
if object_send_prev is not None:
|
|
|
|
filling_ops_queue(object_send_prev, dist.isend, prev_rank, ops)
|
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
if tensor_recv_prev is not None:
|
2022-05-26 06:28:46 +00:00
|
|
|
filling_ops_queue(tensor_recv_prev, dist.irecv, prev_rank, ops)
|
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
if tensor_recv_next is not None:
|
2022-05-26 06:28:46 +00:00
|
|
|
filling_ops_queue(tensor_recv_next, dist.irecv, next_rank, ops)
|
|
|
|
|
|
|
|
if object_send_next is not None:
|
|
|
|
filling_ops_queue(object_send_next, dist.isend, next_rank, ops)
|
|
|
|
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
if len(ops) > 0:
|
|
|
|
reqs = dist.batch_isend_irecv(ops)
|
|
|
|
for req in reqs:
|
|
|
|
req.wait()
|
2021-10-28 16:21:23 +00:00
|
|
|
# To protect against race condition when using batch_isend_irecv().
|
|
|
|
torch.cuda.synchronize()
|
2022-01-07 05:22:22 +00:00
|
|
|
|
|
|
|
if recv_prev and recv_prev_split:
|
2022-05-26 06:28:46 +00:00
|
|
|
if isinstance(tensor_recv_prev, torch.Tensor):
|
|
|
|
tensor_recv_prev = gather_split_1d_tensor(tensor_recv_prev).view(recv_prev_shape).requires_grad_()
|
|
|
|
else:
|
2022-06-27 01:53:57 +00:00
|
|
|
for index in range(len(tensor_recv_prev)):
|
|
|
|
tensor_recv_prev[index] = gather_split_1d_tensor(tensor_recv_prev[index]).view(
|
|
|
|
recv_prev_shape[index]).requires_grad_()
|
2022-05-26 06:28:46 +00:00
|
|
|
|
2022-01-07 05:22:22 +00:00
|
|
|
if recv_next and recv_next_split:
|
2022-05-26 06:28:46 +00:00
|
|
|
if isinstance(tensor_recv_next, torch.Tensor):
|
|
|
|
tensor_recv_next = gather_split_1d_tensor(tensor_recv_next).view(recv_next_shape).requires_grad_()
|
|
|
|
else:
|
2022-06-27 01:53:57 +00:00
|
|
|
for index in range(len(tensor_recv_next)):
|
|
|
|
tensor_recv_next[index] = gather_split_1d_tensor(tensor_recv_next[index]).view(
|
|
|
|
recv_next_shape[index]).requires_grad_()
|
2022-05-26 06:28:46 +00:00
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
return tensor_recv_prev, tensor_recv_next
|
|
|
|
|
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
def recv_forward(input_tensor_shape,
|
|
|
|
prev_rank=None,
|
|
|
|
dtype=torch.float,
|
|
|
|
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
|
|
|
|
|
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
|
2022-03-25 05:02:39 +00:00
|
|
|
prev_rank (int, optional): The rank of the source of the tensor.
|
|
|
|
|
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input tensor or input tensor list.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2021-12-20 15:26:19 +00:00
|
|
|
if gpc.is_pipeline_first_stage():
|
2021-10-28 16:21:23 +00:00
|
|
|
input_tensor = None
|
|
|
|
else:
|
|
|
|
input_tensor, _ = _communicate(recv_prev=True,
|
|
|
|
recv_prev_shape=input_tensor_shape,
|
2021-12-20 15:26:19 +00:00
|
|
|
prev_rank=prev_rank,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=dtype,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
return input_tensor
|
|
|
|
|
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
def recv_backward(output_grad_shape,
|
|
|
|
next_rank=None,
|
|
|
|
dtype=torch.float,
|
|
|
|
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage.
|
|
|
|
|
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
|
2022-03-25 05:02:39 +00:00
|
|
|
next_rank (int, optional): The rank of the source of the tensor.
|
|
|
|
|
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input gradient tensor or gradident tensor list.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2021-12-20 15:26:19 +00:00
|
|
|
if gpc.is_pipeline_last_stage():
|
2021-10-28 16:21:23 +00:00
|
|
|
output_tensor_grad = None
|
|
|
|
else:
|
|
|
|
_, output_tensor_grad = _communicate(recv_next=True,
|
|
|
|
recv_next_shape=output_grad_shape,
|
2021-12-20 15:26:19 +00:00
|
|
|
next_rank=next_rank,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=dtype,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
return output_tensor_grad
|
|
|
|
|
|
|
|
|
2022-04-25 05:41:43 +00:00
|
|
|
def send_forward(output_tensor, next_rank=None, scatter_gather_tensors=False) -> None:
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Sends the input tensor to the next stage in pipeline.
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
|
2022-03-25 05:02:39 +00:00
|
|
|
next_rank (int, optional): The rank of the recipient of the tensor.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2021-12-20 15:26:19 +00:00
|
|
|
if not gpc.is_pipeline_last_stage():
|
2022-05-26 06:28:46 +00:00
|
|
|
_communicate(object_send_next=output_tensor, next_rank=next_rank, scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
|
2022-04-25 05:41:43 +00:00
|
|
|
def send_backward(input_tensor_grad, prev_rank=None, scatter_gather_tensors=False) -> None:
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Sends the gradient tensor to the previous stage in pipeline.
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent
|
2022-03-25 05:02:39 +00:00
|
|
|
prev_rank (int, optional): The rank of the recipient of the tensor
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2021-12-20 15:26:19 +00:00
|
|
|
if not gpc.is_pipeline_first_stage():
|
2022-05-26 06:28:46 +00:00
|
|
|
_communicate(object_send_prev=input_tensor_grad,
|
2022-01-07 05:22:22 +00:00
|
|
|
prev_rank=prev_rank,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
def send_forward_recv_backward(output_tensor,
|
|
|
|
output_grad_shape,
|
|
|
|
recv_next=True,
|
2021-12-20 15:26:19 +00:00
|
|
|
next_rank=None,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=torch.float,
|
2022-05-26 06:28:46 +00:00
|
|
|
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
|
2021-10-28 16:21:23 +00:00
|
|
|
"""Batched communication operation. Sends the input tensor to the
|
2022-03-25 05:02:39 +00:00
|
|
|
next stage in pipeline, while receives the gradient tensor from the
|
|
|
|
next stage in pipeline as the input gradient tensor of this stage.
|
|
|
|
|
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
|
|
|
|
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
|
2022-03-25 05:02:39 +00:00
|
|
|
|
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input gradient tensor.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2021-12-20 15:26:19 +00:00
|
|
|
if gpc.is_pipeline_last_stage():
|
2021-10-28 16:21:23 +00:00
|
|
|
output_tensor_grad = None
|
|
|
|
else:
|
2022-05-26 06:28:46 +00:00
|
|
|
_, output_tensor_grad = _communicate(object_send_next=output_tensor,
|
2021-10-28 16:21:23 +00:00
|
|
|
recv_next=recv_next,
|
|
|
|
recv_next_shape=output_grad_shape,
|
2021-12-20 15:26:19 +00:00
|
|
|
next_rank=next_rank,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=dtype,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
return output_tensor_grad
|
|
|
|
|
|
|
|
|
|
|
|
def send_backward_recv_forward(input_tensor_grad,
|
|
|
|
input_tensor_shape,
|
|
|
|
recv_prev=True,
|
2021-12-20 15:26:19 +00:00
|
|
|
prev_rank=None,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=torch.float,
|
2022-05-26 06:28:46 +00:00
|
|
|
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Batched communication operation. Sends the gradient tensor to the
|
|
|
|
previous stage in pipeline, while receives the output tensor from the
|
|
|
|
previous stage in pipeline as the input of this stage.
|
|
|
|
|
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
|
|
|
|
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
|
2022-03-25 05:02:39 +00:00
|
|
|
|
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input tensor.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2021-12-20 15:26:19 +00:00
|
|
|
if gpc.is_pipeline_first_stage():
|
2021-10-28 16:21:23 +00:00
|
|
|
input_tensor = None
|
|
|
|
else:
|
2022-05-26 06:28:46 +00:00
|
|
|
input_tensor, _ = _communicate(object_send_prev=input_tensor_grad,
|
2021-10-28 16:21:23 +00:00
|
|
|
recv_prev=recv_prev,
|
|
|
|
recv_prev_shape=input_tensor_shape,
|
2021-12-20 15:26:19 +00:00
|
|
|
prev_rank=prev_rank,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=dtype,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
return input_tensor
|
|
|
|
|
|
|
|
|
|
|
|
def send_forward_recv_forward(output_tensor,
|
|
|
|
input_tensor_shape,
|
|
|
|
recv_prev=True,
|
|
|
|
prev_rank=None,
|
2021-12-20 15:26:19 +00:00
|
|
|
next_rank=None,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=torch.float,
|
2022-05-26 06:28:46 +00:00
|
|
|
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
|
2021-10-28 16:21:23 +00:00
|
|
|
"""Batched communication operation. Sends the input tensor to the
|
2022-03-25 05:02:39 +00:00
|
|
|
next stage in pipeline, while receives the output tensor from the
|
|
|
|
previous stage in pipeline as the input of this stage.
|
|
|
|
|
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
|
|
|
|
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
|
2022-03-25 05:02:39 +00:00
|
|
|
|
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input tensor.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2022-05-26 06:28:46 +00:00
|
|
|
input_tensor, _ = _communicate(object_send_next=output_tensor,
|
2021-10-28 16:21:23 +00:00
|
|
|
recv_prev=recv_prev,
|
|
|
|
recv_prev_shape=input_tensor_shape,
|
|
|
|
prev_rank=prev_rank,
|
2021-12-20 15:26:19 +00:00
|
|
|
next_rank=next_rank,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=dtype,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
return input_tensor
|
|
|
|
|
|
|
|
|
|
|
|
def send_backward_recv_backward(input_tensor_grad,
|
|
|
|
output_grad_shape,
|
|
|
|
recv_next=True,
|
|
|
|
prev_rank=None,
|
2021-12-20 15:26:19 +00:00
|
|
|
next_rank=None,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=torch.float,
|
2022-05-26 06:28:46 +00:00
|
|
|
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Batched communication operation. Sends the gradient tensor to the
|
|
|
|
previous stage in pipeline, while receives the gradient tensor from the
|
|
|
|
next member in pipeline as the input of this stage.
|
|
|
|
|
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
|
|
|
|
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
|
2022-03-25 05:02:39 +00:00
|
|
|
|
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input gradient tensor.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2022-05-26 06:28:46 +00:00
|
|
|
_, output_tensor_grad = _communicate(object_send_prev=input_tensor_grad,
|
2021-10-28 16:21:23 +00:00
|
|
|
recv_next=recv_next,
|
|
|
|
recv_next_shape=output_grad_shape,
|
|
|
|
prev_rank=prev_rank,
|
2021-12-20 15:26:19 +00:00
|
|
|
next_rank=next_rank,
|
2022-01-07 05:22:22 +00:00
|
|
|
dtype=dtype,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
return output_tensor_grad
|
|
|
|
|
|
|
|
|
2022-05-26 06:28:46 +00:00
|
|
|
def send_forward_backward_recv_forward_backward(
|
|
|
|
output_tensor,
|
|
|
|
input_tensor_grad,
|
|
|
|
input_tensor_shape,
|
|
|
|
output_grad_shape,
|
|
|
|
recv_prev=True,
|
|
|
|
recv_next=True,
|
|
|
|
prev_rank=None,
|
|
|
|
next_rank=None,
|
|
|
|
dtype=torch.float,
|
|
|
|
scatter_gather_tensors=False) -> Tuple[Union[torch.Tensor, List[torch.Tensor]]]:
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Batched communication operation. Sends the input tensor to the next stage in pipeline and
|
|
|
|
the gradient tensor to the previous stage, while receives the input gradient tensor from the
|
|
|
|
next stage and the input tensor from the previous stage.
|
|
|
|
|
|
|
|
Args:
|
2022-05-26 06:28:46 +00:00
|
|
|
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor sent to the next.
|
|
|
|
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor sent to the previous.
|
|
|
|
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor received from the previous.
|
|
|
|
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor received from the next.
|
2022-03-25 05:02:39 +00:00
|
|
|
|
|
|
|
Returns:
|
2022-05-26 06:28:46 +00:00
|
|
|
Tuple(Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]], Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): (the input tensor, the input gradient tensor)
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
2022-05-26 06:28:46 +00:00
|
|
|
input_tensor, output_tensor_grad = _communicate(object_send_next=output_tensor,
|
|
|
|
object_send_prev=input_tensor_grad,
|
2022-04-01 05:31:06 +00:00
|
|
|
recv_prev=recv_prev,
|
|
|
|
recv_next=recv_next,
|
|
|
|
recv_prev_shape=input_tensor_shape,
|
|
|
|
recv_next_shape=output_grad_shape,
|
|
|
|
prev_rank=prev_rank,
|
|
|
|
next_rank=next_rank,
|
|
|
|
dtype=dtype,
|
|
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
2021-10-28 16:21:23 +00:00
|
|
|
return input_tensor, output_tensor_grad
|