You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/communication/p2p.py

404 lines
19 KiB

3 years ago
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import List, Tuple, Union
3 years ago
import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import get_current_device
from functools import reduce
import operator
from .utils import split_tensor_into_1d_equal_chunks, gather_split_1d_tensor
TensorShape = Union[torch.Size, List[int], Tuple[int]]
def _get_tensor_shape(tensor_shape: TensorShape, chunk_tensor: bool = False) -> Tuple[TensorShape, bool]:
"""get the exact tensor shape when communicating and return whether the tensor is a chunk
Args:
tensor_shape (:class:`torch.Size`): shape of tensor
chunk_tensor (bool, optional): whether to chunk tensor, defaults to False
Returns:
Tuple[Union[:class:`torch.Size`, List[int], Tuple[int]], bool]: exact tensor shape, whether to chunk tensor
"""
if chunk_tensor:
tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1)
tensor_parallel_world_size = gpc.get_world_size(ParallelMode.TENSOR)
if tensor_chunk_shape % tensor_parallel_world_size == 0:
tensor_chunk_shape = tensor_chunk_shape // tensor_parallel_world_size
else:
tensor_chunk_shape = tensor_shape
chunk_tensor = False
else:
tensor_chunk_shape = tensor_shape
return tensor_chunk_shape, chunk_tensor
3 years ago
def create_recv_buffer_with_shapes(recv_shapes, dtype, scatter_gather_tensors):
if isinstance(recv_shapes, torch.Size):
recv_chunk_shape, recv_split = _get_tensor_shape(recv_shapes, scatter_gather_tensors)
buffer_recv = torch.empty(recv_chunk_shape, requires_grad=True, device=get_current_device(), dtype=dtype)
return buffer_recv, recv_split
buffer_recv = []
for recv_shape in recv_shapes:
recv_chunk_shape, recv_split = _get_tensor_shape(recv_shape, scatter_gather_tensors)
tensor_recv = torch.empty(recv_chunk_shape, requires_grad=True, device=get_current_device(), dtype=dtype)
buffer_recv.append(tensor_recv)
return buffer_recv, recv_split
def process_object_to_send(object_send, scatter_gather_tensors):
if isinstance(object_send, torch.Tensor):
send_split = _get_tensor_shape(object_send.shape, scatter_gather_tensors)[1]
if send_split:
object_send = split_tensor_into_1d_equal_chunks(object_send)
return object_send
object_send_list = []
for tensor_send in object_send:
send_split = _get_tensor_shape(tensor_send.shape, scatter_gather_tensors)[1]
if send_split:
object_send_list.append(split_tensor_into_1d_equal_chunks(tensor_send))
object_send = tuple(object_send_list)
return object_send
def filling_ops_queue(obj, comm_op, comm_rank, ops_queue):
if isinstance(obj, torch.Tensor):
op_to_add = dist.P2POp(comm_op, obj, comm_rank)
ops_queue.append(op_to_add)
else:
for tensor_to_comm in obj:
op_to_add = dist.P2POp(comm_op, tensor_to_comm, comm_rank)
ops_queue.append(op_to_add)
def _communicate(object_send_next: Union[torch.Tensor, List[torch.Tensor]] = None,
object_send_prev: Union[torch.Tensor, List[torch.Tensor]] = None,
recv_prev: bool = False,
recv_next: bool = False,
recv_prev_shape: Union[torch.Size, List[torch.Size]] = None,
recv_next_shape: Union[torch.Size, List[torch.Size]] = None,
prev_rank: int = None,
next_rank: int = None,
dtype: torch.dtype = None,
scatter_gather_tensors: bool = False) -> Tuple[Union[torch.Tensor, List[torch.Tensor]]]:
3 years ago
"""
Adapted from megatron.p2p_communication.
Communicate tensors between stages. Used as helper method in other
communication methods that are used in pipeline schedule.
Takes the following arguments:
object_send_next (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): tensor to send to next rank (no tensor sent if
3 years ago
set to None).
object_send_prev (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): tensor to send to prev rank (no tensor sent if
3 years ago
set to None).
recv_prev (bool): boolean for whether tensor should be received from
3 years ago
previous rank.
recv_next (bool): boolean for whether tensor should be received from
3 years ago
next rank.
recv_prev_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): shape of the tensor to be received from the previous stage, defualts to None.
recv_next_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): shape of the tensor to be received from the next stage, defualts to None.
prev_rank (int): the rank of the previous pipeline stage, defualts to None,
next_rank (int): the rank of the next pipeline stage, defualts to None,
dtype (torch.dtype): data type of intermediate buffers, defaults to None
scatter_gather_tensors (bool): whether to scatter and gather tensor between pipeline stages, defaults to False
3 years ago
Returns:
Tuple[Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]]: returns tensor_recv_prev, tensor_recv_next
3 years ago
"""
# Create placeholder tensors for receive in forward and backward directions
# if needed.
tensor_recv_prev = None
tensor_recv_next = None
if recv_prev:
assert recv_prev_shape is not None
tensor_recv_prev, recv_prev_split = create_recv_buffer_with_shapes(recv_prev_shape, dtype,
scatter_gather_tensors)
3 years ago
if recv_next:
assert recv_next_shape is not None
tensor_recv_next, recv_next_split = create_recv_buffer_with_shapes(recv_next_shape, dtype,
scatter_gather_tensors)
3 years ago
if object_send_prev is not None or recv_prev:
3 years ago
if prev_rank is None:
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
3 years ago
if object_send_next is not None or recv_next:
3 years ago
if next_rank is None:
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
3 years ago
if object_send_prev is not None:
object_send_prev = process_object_to_send(object_send_prev, scatter_gather_tensors)
if object_send_next is not None:
object_send_next = process_object_to_send(object_send_next, scatter_gather_tensors)
3 years ago
ops = []
if object_send_prev is not None:
filling_ops_queue(object_send_prev, dist.isend, prev_rank, ops)
3 years ago
if tensor_recv_prev is not None:
filling_ops_queue(tensor_recv_prev, dist.irecv, prev_rank, ops)
3 years ago
if tensor_recv_next is not None:
filling_ops_queue(tensor_recv_next, dist.irecv, next_rank, ops)
if object_send_next is not None:
filling_ops_queue(object_send_next, dist.isend, next_rank, ops)
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
if len(ops) > 0:
reqs = dist.batch_isend_irecv(ops)
for req in reqs:
req.wait()
3 years ago
# To protect against race condition when using batch_isend_irecv().
torch.cuda.synchronize()
if recv_prev and recv_prev_split:
if isinstance(tensor_recv_prev, torch.Tensor):
tensor_recv_prev = gather_split_1d_tensor(tensor_recv_prev).view(recv_prev_shape).requires_grad_()
else:
for index in range(len(tensor_recv_prev)):
tensor_recv_prev[index] = gather_split_1d_tensor(tensor_recv_prev[index]).view(
recv_prev_shape[index]).requires_grad_()
if recv_next and recv_next_split:
if isinstance(tensor_recv_next, torch.Tensor):
tensor_recv_next = gather_split_1d_tensor(tensor_recv_next).view(recv_next_shape).requires_grad_()
else:
for index in range(len(tensor_recv_next)):
tensor_recv_next[index] = gather_split_1d_tensor(tensor_recv_next[index]).view(
recv_next_shape[index]).requires_grad_()
3 years ago
return tensor_recv_prev, tensor_recv_next
def recv_forward(input_tensor_shape,
prev_rank=None,
dtype=torch.float,
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
Args:
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
prev_rank (int, optional): The rank of the source of the tensor.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input tensor or input tensor list.
3 years ago
"""
if gpc.is_pipeline_first_stage():
3 years ago
input_tensor = None
else:
input_tensor, _ = _communicate(recv_prev=True,
recv_prev_shape=input_tensor_shape,
prev_rank=prev_rank,
dtype=dtype,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
return input_tensor
def recv_backward(output_grad_shape,
next_rank=None,
dtype=torch.float,
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage.
Args:
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
next_rank (int, optional): The rank of the source of the tensor.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input gradient tensor or gradident tensor list.
3 years ago
"""
if gpc.is_pipeline_last_stage():
3 years ago
output_tensor_grad = None
else:
_, output_tensor_grad = _communicate(recv_next=True,
recv_next_shape=output_grad_shape,
next_rank=next_rank,
dtype=dtype,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
return output_tensor_grad
def send_forward(output_tensor, next_rank=None, scatter_gather_tensors=False) -> None:
"""Sends the input tensor to the next stage in pipeline.
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
Args:
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
next_rank (int, optional): The rank of the recipient of the tensor.
3 years ago
"""
if not gpc.is_pipeline_last_stage():
_communicate(object_send_next=output_tensor, next_rank=next_rank, scatter_gather_tensors=scatter_gather_tensors)
3 years ago
def send_backward(input_tensor_grad, prev_rank=None, scatter_gather_tensors=False) -> None:
"""Sends the gradient tensor to the previous stage in pipeline.
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
Args:
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent
prev_rank (int, optional): The rank of the recipient of the tensor
3 years ago
"""
if not gpc.is_pipeline_first_stage():
_communicate(object_send_prev=input_tensor_grad,
prev_rank=prev_rank,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
def send_forward_recv_backward(output_tensor,
output_grad_shape,
recv_next=True,
next_rank=None,
dtype=torch.float,
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
3 years ago
"""Batched communication operation. Sends the input tensor to the
next stage in pipeline, while receives the gradient tensor from the
next stage in pipeline as the input gradient tensor of this stage.
Args:
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input gradient tensor.
3 years ago
"""
if gpc.is_pipeline_last_stage():
3 years ago
output_tensor_grad = None
else:
_, output_tensor_grad = _communicate(object_send_next=output_tensor,
3 years ago
recv_next=recv_next,
recv_next_shape=output_grad_shape,
next_rank=next_rank,
dtype=dtype,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
return output_tensor_grad
def send_backward_recv_forward(input_tensor_grad,
input_tensor_shape,
recv_prev=True,
prev_rank=None,
dtype=torch.float,
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Batched communication operation. Sends the gradient tensor to the
previous stage in pipeline, while receives the output tensor from the
previous stage in pipeline as the input of this stage.
Args:
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input tensor.
3 years ago
"""
if gpc.is_pipeline_first_stage():
3 years ago
input_tensor = None
else:
input_tensor, _ = _communicate(object_send_prev=input_tensor_grad,
3 years ago
recv_prev=recv_prev,
recv_prev_shape=input_tensor_shape,
prev_rank=prev_rank,
dtype=dtype,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
return input_tensor
def send_forward_recv_forward(output_tensor,
input_tensor_shape,
recv_prev=True,
prev_rank=None,
next_rank=None,
dtype=torch.float,
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
3 years ago
"""Batched communication operation. Sends the input tensor to the
next stage in pipeline, while receives the output tensor from the
previous stage in pipeline as the input of this stage.
Args:
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input tensor.
3 years ago
"""
input_tensor, _ = _communicate(object_send_next=output_tensor,
3 years ago
recv_prev=recv_prev,
recv_prev_shape=input_tensor_shape,
prev_rank=prev_rank,
next_rank=next_rank,
dtype=dtype,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
return input_tensor
def send_backward_recv_backward(input_tensor_grad,
output_grad_shape,
recv_next=True,
prev_rank=None,
next_rank=None,
dtype=torch.float,
scatter_gather_tensors=False) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Batched communication operation. Sends the gradient tensor to the
previous stage in pipeline, while receives the gradient tensor from the
next member in pipeline as the input of this stage.
Args:
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor to be sent.
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor to be received.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: The input gradient tensor.
3 years ago
"""
_, output_tensor_grad = _communicate(object_send_prev=input_tensor_grad,
3 years ago
recv_next=recv_next,
recv_next_shape=output_grad_shape,
prev_rank=prev_rank,
next_rank=next_rank,
dtype=dtype,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
return output_tensor_grad
def send_forward_backward_recv_forward_backward(
output_tensor,
input_tensor_grad,
input_tensor_shape,
output_grad_shape,
recv_prev=True,
recv_next=True,
prev_rank=None,
next_rank=None,
dtype=torch.float,
scatter_gather_tensors=False) -> Tuple[Union[torch.Tensor, List[torch.Tensor]]]:
"""Batched communication operation. Sends the input tensor to the next stage in pipeline and
the gradient tensor to the previous stage, while receives the input gradient tensor from the
next stage and the input tensor from the previous stage.
Args:
output_tensor (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor sent to the next.
input_tensor_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Tensor sent to the previous.
input_tensor_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor received from the previous.
output_grad_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the tensor received from the next.
Returns:
Tuple(Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]], Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): (the input tensor, the input gradient tensor)
3 years ago
"""
input_tensor, output_tensor_grad = _communicate(object_send_next=output_tensor,
object_send_prev=input_tensor_grad,
recv_prev=recv_prev,
recv_next=recv_next,
recv_prev_shape=input_tensor_shape,
recv_next_shape=output_grad_shape,
prev_rank=prev_rank,
next_rank=next_rank,
dtype=dtype,
scatter_gather_tensors=scatter_gather_tensors)
3 years ago
return input_tensor, output_tensor_grad