2022-08-22 02:32:17 +00:00
|
|
|
import torch
|
|
|
|
from torch.fx import GraphModule
|
|
|
|
import torch.nn as nn
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from colossalai.fx.proxy import ColoProxy
|
|
|
|
from colossalai.fx.tracer.tracer import ColoTracer
|
|
|
|
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
2022-09-13 04:07:09 +00:00
|
|
|
from colossalai.auto_parallel.solver.op_handler.dot_handler import DotHandler
|
2022-08-22 02:32:17 +00:00
|
|
|
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
|
|
|
|
|
|
|
|
class LinearModel(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_features, out_features):
|
|
|
|
super().__init__()
|
|
|
|
self.linear = nn.Linear(in_features, out_features)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x * 2
|
|
|
|
x = self.linear(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def test_dot_handler():
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
# [[0, 1]
|
|
|
|
# [2, 3]]
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
|
|
|
entire_shape = torch.Size((4, 8))
|
|
|
|
|
|
|
|
tracer = ColoTracer()
|
|
|
|
model = LinearModel(8, 16)
|
|
|
|
input_sample = {'x': torch.rand(4, 8).to('meta')}
|
|
|
|
# graph():
|
|
|
|
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
|
|
|
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
|
|
|
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
|
|
|
|
# return conv
|
|
|
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
|
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
|
|
gm.recompile()
|
|
|
|
# [x, mul, linear, output]
|
|
|
|
nodes = [node for node in gm.graph.nodes]
|
|
|
|
|
2022-08-23 06:23:08 +00:00
|
|
|
# find the sharding strategies for the input node of the conv node
|
|
|
|
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
|
|
|
|
strategies_vector_for_input = StrategiesVector(node=nodes[1])
|
2022-08-22 02:32:17 +00:00
|
|
|
sharding_option = (None, 0, 1)
|
|
|
|
for first_sharding_index in sharding_option:
|
|
|
|
for second_sharding_index in sharding_option:
|
|
|
|
if first_sharding_index is not None and second_sharding_index == first_sharding_index:
|
|
|
|
continue
|
|
|
|
if first_sharding_index is None:
|
|
|
|
first_dim_spec = _DimSpec([])
|
|
|
|
else:
|
|
|
|
first_dim_spec = _DimSpec([first_sharding_index])
|
|
|
|
|
|
|
|
if second_sharding_index is None:
|
|
|
|
second_dim_spec = _DimSpec([])
|
|
|
|
else:
|
|
|
|
second_dim_spec = _DimSpec([second_sharding_index])
|
|
|
|
|
|
|
|
sharding_sequence = [first_dim_spec, second_dim_spec]
|
|
|
|
sharding_spec = ShardingSpec(device_mesh=device_mesh,
|
|
|
|
entire_shape=entire_shape,
|
|
|
|
sharding_sequence=sharding_sequence)
|
2022-08-25 09:19:59 +00:00
|
|
|
strategy_name = str(sharding_spec.sharding_sequence)
|
|
|
|
sharding_strategy = ShardingStrategy(name=strategy_name, output_sharding_spec=sharding_spec)
|
|
|
|
strategies_vector_for_input.append(sharding_strategy)
|
2022-08-22 02:32:17 +00:00
|
|
|
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
|
|
|
|
|
2022-08-23 06:23:08 +00:00
|
|
|
# generate dot strategy
|
|
|
|
strategies_vector = StrategiesVector(node=nodes[2])
|
2022-09-13 10:30:18 +00:00
|
|
|
dot_handler = DotHandler(
|
|
|
|
node=nodes[2],
|
|
|
|
device_mesh=device_mesh,
|
|
|
|
strategies_vector=strategies_vector,
|
|
|
|
)
|
2022-08-23 06:23:08 +00:00
|
|
|
strategies_vector = dot_handler.register_strategy()
|
2022-08-22 02:32:17 +00:00
|
|
|
|
|
|
|
# ['S0S1 = S0R x RS1', 'S1S0 = S1R x RS0', 'S0R = S0S1 x S1R', 'S1R = S1S0 x S0R', 'RS1 = RS0 x S0S1', 'RS0 = RS1 x S1S0', 'RS0 = RR x RS0', 'RS1 = RR x RS1', 'RR = RR x RR']
|
2022-08-23 06:23:08 +00:00
|
|
|
strategy_name_list = [strategy.name for strategy in strategies_vector]
|
2022-08-22 02:32:17 +00:00
|
|
|
|
|
|
|
# SS = SR x RS
|
|
|
|
assert 'S0S1 = S0R x RS1' in strategy_name_list
|
|
|
|
assert 'S1S0 = S1R x RS0' in strategy_name_list
|
|
|
|
|
|
|
|
# SR = SS x SR
|
|
|
|
assert 'S0R = S0S1 x S1R' in strategy_name_list
|
|
|
|
assert 'S1R = S1S0 x S0R' in strategy_name_list
|
|
|
|
|
|
|
|
# RS = RS x SS
|
|
|
|
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
|
|
|
assert 'RS1 = RS0 x S0S1' in strategy_name_list
|
|
|
|
|
|
|
|
# RR = RS x SR
|
|
|
|
assert 'RR = RS0 x S0R' in strategy_name_list
|
|
|
|
assert 'RR = RS1 x S1R' in strategy_name_list
|
|
|
|
|
|
|
|
# RS= RR x RS
|
|
|
|
assert 'RS0 = RR x RS0' in strategy_name_list
|
|
|
|
assert 'RS1 = RR x RS1' in strategy_name_list
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_dot_handler()
|