You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_fx/test_codegen/test_activation_checkpoint_...

105 lines
3.1 KiB

import torch
import pytest
from torch.utils.checkpoint import checkpoint
from torch.fx import GraphModule
from colossalai.fx import ColoTracer
try:
from colossalai.fx.codegen import ActivationCheckpointCodeGen
with_codegen = True
except:
# fall back to older pytorch version
from colossalai.fx.codegen import python_code_with_activation_checkpoint
with_codegen = False
class MLP(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
def forward(self, x):
return self.linear1(x), self.linear1(x)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.mlp1 = MLP()
self.mlp2 = MLP()
self.linear3 = torch.nn.Linear(4, 4)
def forward(self, x):
y1, y2 = checkpoint(self.mlp1, x)
y3, y4 = checkpoint(self.mlp2, x)
return y1 + y2 + y3 + y4
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_act_ckpt_codegen():
# build model and run forward
model = MyModule()
data = torch.rand(4, 4)
non_fx_out = model(data)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
codegen = ActivationCheckpointCodeGen()
graph.set_codegen(codegen)
# check ops are annotated with ckpt
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear1_1', 'mlp2_linear1', 'mlp2_linear1_1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert hasattr(node, 'activation_checkpoint')
# assert checkpoint function will be generated
code = graph.python_code('self').src
assert 'checkpoint_0' in code and 'checkpoint_1' in code
# recompile and verify the outputs are consistent
gm = GraphModule(model, graph)
gm.recompile()
fx_out = gm(data)
assert torch.equal(non_fx_out, fx_out)
@pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0')
def test_act_ckpt_python_code_torch11():
# build model and run forward
model = MyModule()
data = torch.rand(4, 4)
non_fx_out = model(data)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
# replace a bound method of an object
graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
# check ops are annotated with ckpt
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear1_1', 'mlp2_linear1', 'mlp2_linear1_1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert hasattr(node, 'activation_checkpoint')
# assert checkpoint function will be generated
code = graph.python_code('self').src
assert 'checkpoint_0' in code and 'checkpoint_1' in code
# recompile and verify the outputs are consistent
gm = GraphModule(model, graph)
gm.recompile()
fx_out = gm(data)
assert torch.equal(non_fx_out, fx_out)
if __name__ == '__main__':
test_act_ckpt_codegen()
test_act_ckpt_python_code_torch11()