[fx] added activation checkpoint codegen (#1355)

pull/1357/head
Frank Lee 2022-07-25 09:39:10 +08:00 committed by GitHub
parent 38fd8844c0
commit 644582eee9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 436 additions and 0 deletions

View File

@ -0,0 +1,3 @@
from .activation_checkpoint_codegen import ActivationCheckpointCodeGen
__all__ = ['ActivationCheckpointCodeGen']

View File

@ -0,0 +1,364 @@
import torch
from typing import List, Callable, Any, Tuple, Dict
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, CodeGen, _origin_type_map
__all__ = ['ActivationCheckpointCodeGen']
class ActivationCheckpointCodeGen(CodeGen):
def find_input_and_output_nodes(self, nodes: List[Node]):
"""
Find the input and output node names which are not found in the given list of nodes.
"""
input_nodes = []
output_nodes = []
# if a node has an input node which is not in the node list
# we treat that input node as the input of the checkpoint function
for node in nodes:
for input_node in node._input_nodes.keys():
node_repr = repr(input_node)
if input_node not in nodes and node_repr not in input_nodes:
input_nodes.append(node_repr)
# if a node has a user node which is not in the node list
# we treat that user node as the node receiving the current node output
for node in nodes:
for output_node in node.users.keys():
node_repr = repr(node)
if output_node not in nodes and node_repr not in output_nodes:
output_nodes.append(node_repr)
return input_nodes, output_nodes
def find_ckpt_regions(self, nodes: List[Node]):
"""
Find the checkpoint regions given a list of consecutive nodes. The outputs will be list
of tuples, each tuple is in the form of (start_index, end_index).
"""
ckpt_nodes = []
ckpt_regions = []
start = -1
end = -1
current_region = None
for idx, node in enumerate(nodes):
if hasattr(node, 'activation_checkpoint'):
act_ckpt_label = node.activation_checkpoint
# this activation checkpoint label is not set yet
# meaning this is the first node of the activation ckpt region
if current_region is None:
current_region = act_ckpt_label
start = idx
# if activation checkpoint has changed
# we restart the tracking
# e.g. node ckpt states = [ckpt1, ckpt2, ckpt2, ckpt2]
if act_ckpt_label != current_region:
assert start != -1
ckpt_regions.append((start, idx - 1))
current_region = act_ckpt_label
start = idx
end = -1
elif current_region is not None and not hasattr(node, 'activation_checkpoint'):
# used to check the case below
# node ckpt states = [ckpt, ckpt, non-ckpt]
end = idx - 1
assert start != -1 and end != -1
ckpt_regions.append((start, end))
start = end = -1
current_region = None
else:
pass
return ckpt_regions
def gen_ckpt_fn_def(self, label, free_vars: List[str]) -> str:
"""
Generate the checkpoint function definition
"""
return f"def checkpoint_{label}({', '.join(free_vars)}):"
def gen_ckpt_output(self, output_vars: List[str]) -> str:
"""
Generate the return statement for checkpoint region
"""
return f"return {', '.join(output_vars)}"
def gen_ckpt_usage(self, label, input_vars, output_vars):
"""
Generate the checkpoint function call code text
"""
outputs = ', '.join(output_vars)
inputs = ', '.join(input_vars)
return f'{outputs} = torch.utils.checkpoint.checkpoint(checkpoint_{label}, {inputs})'
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace) -> PythonCode:
free_vars: List[str] = []
body: List[str] = []
globals_: Dict[str, Any] = {}
wrapped_fns: Dict[str, None] = {}
# Wrap string in list to pass by reference
maybe_return_annotation: List[str] = ['']
def add_global(name_hint: str, obj: Any):
"""Add an obj to be tracked as a global.
We call this for names that reference objects external to the
Graph, like functions or types.
Returns: the global name that should be used to reference 'obj' in generated source.
"""
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
# HACK: workaround for how torch custom ops are registered. We
# can't import them like normal modules so they must retain their
# fully qualified name.
return _get_qualified_name(obj)
# normalize the name hint to get a proper identifier
global_name = namespace.create_name(name_hint, obj)
if global_name in globals_:
assert globals_[global_name] is obj
return global_name
globals_[global_name] = obj
return global_name
# Pre-fill the globals table with registered builtins.
for name, (_, obj) in _custom_builtins.items():
add_global(name, obj)
def type_repr(o: Any):
if o == ():
# Empty tuple is used for empty tuple type annotation Tuple[()]
return '()'
typename = _type_repr(o)
if hasattr(o, '__origin__'):
# This is a generic type, e.g. typing.List[torch.Tensor]
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
origin_typename = add_global(_type_repr(origin_type), origin_type)
if hasattr(o, '__args__'):
# Assign global names for each of the inner type variables.
args = [type_repr(arg) for arg in o.__args__]
if len(args) == 0:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python < 3.9
return origin_typename
return f'{origin_typename}[{",".join(args)}]'
else:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python 3.9+
return origin_typename
# Common case: this is a regular module name like 'foo.bar.baz'
return add_global(typename, o)
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str:
def _get_repr(arg):
# Handle NamedTuples (if it has `_fields`) via add_global.
if isinstance(arg, tuple) and hasattr(arg, '_fields'):
qualified_name = _get_qualified_name(type(arg))
global_name = add_global(qualified_name, type(arg))
return f"{global_name}{repr(tuple(arg))}"
return repr(arg)
args_s = ', '.join(_get_repr(a) for a in args)
kwargs_s = ', '.join(f'{k} = {_get_repr(v)}' for k, v in kwargs.items())
if args_s and kwargs_s:
return f'{args_s}, {kwargs_s}'
return args_s or kwargs_s
# Run through reverse nodes and record the first instance of a use
# of a given node. This represents the *last* use of the node in the
# execution order of the program, which we will use to free unused
# values
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
def delete_unused_values(user: Node):
"""
Delete values after their last use. This ensures that values that are
not used in the remainder of the code are freed and the memory usage
of the code is optimal.
"""
if user.op == 'placeholder':
return
if user.op == 'output':
body.append('\n')
return
nodes_to_delete = user_to_last_uses.get(user, [])
if len(nodes_to_delete):
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
body.append(f'; {to_delete_str}\n')
else:
body.append('\n')
def emit_node(node: Node):
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}'
if node.op == 'placeholder':
assert isinstance(node.target, str)
maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}'
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}')
raw_name = node.target.replace('*', '')
if raw_name != repr(node):
body.append(f'{repr(node)} = {raw_name}\n')
return
elif node.op == 'call_method':
assert isinstance(node.target, str)
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}'
f'({_format_args(node.args[1:], node.kwargs)})')
return
elif node.op == 'call_function':
assert callable(node.target)
# pretty print operators
if node.target.__module__ == '_operator' and node.target.__name__ in magic_methods:
assert isinstance(node.args, tuple)
body.append(f'{repr(node)}{maybe_type_annotation} = '
f'{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}')
return
# pretty print inplace operators; required for jit.script to work properly
# not currently supported in normal FX graphs, but generated by torchdynamo
if node.target.__module__ == '_operator' and node.target.__name__ in inplace_methods:
body.append(f'{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; '
f'{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}')
return
qualified_name = _get_qualified_name(node.target)
global_name = add_global(qualified_name, node.target)
# special case for getattr: node.args could be 2-argument or 3-argument
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
if global_name == 'getattr' and \
isinstance(node.args, tuple) and \
isinstance(node.args[1], str) and \
node.args[1].isidentifier() and \
len(node.args) == 2:
body.append(
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}')
return
body.append(
f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})')
if node.meta.get('is_wrapped', False):
wrapped_fns.setdefault(global_name)
return
elif node.op == 'call_module':
assert isinstance(node.target, str)
body.append(f'{repr(node)}{maybe_type_annotation} = '
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})')
return
elif node.op == 'get_attr':
assert isinstance(node.target, str)
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}')
return
elif node.op == 'output':
if node.type is not None:
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
body.append(self.generate_output(node.args[0]))
return
raise NotImplementedError(f'node: {node.op} {node.target}')
#########################################
# Modified for activation checkpointing #
#########################################
# find the activation checkpoint regions
ckpt_regions = self.find_ckpt_regions(nodes)
start_idx = [item[0] for item in ckpt_regions]
end_idx = [item[1] for item in ckpt_regions]
input_vars = []
output_vars = []
within_ckpt_region = False
node_list = list(nodes)
# find the input and output var names for each region
for idx, (start, end) in enumerate(ckpt_regions):
ckpt_node_list = node_list[start:end + 1]
inputs, outputs = self.find_input_and_output_nodes(ckpt_node_list)
input_vars.append(inputs)
output_vars.append(outputs)
# append code text to body
for idx, node in enumerate(node_list):
# if this is the first node of the ckpt region
# append the ckpt function defition
if idx in start_idx:
label = start_idx.index(idx)
ckpt_fn_def = self.gen_ckpt_fn_def(label, input_vars[label])
body.append(f'{ckpt_fn_def}\n')
within_ckpt_region = True
# NOTE: emit_node does not emit a string with newline. It depends
# on delete_unused_values to append one
emit_node(node)
# add indentation to the emmited node
if within_ckpt_region:
body[-1] = ' ' + body[-1]
# delete unused values
delete_unused_values(node)
if idx in end_idx:
# if this is the last node of the ckpt region
# generate return statement
label = end_idx.index(idx)
return_statement = self.gen_ckpt_output(output_vars[label])
return_statement = f' {return_statement}\n'
body.append(return_statement)
# generate checkpoint function call in a new line
usage = self.gen_ckpt_usage(label, input_vars[label], output_vars[label])
usage += '\n'
body.append(usage)
within_ckpt_region = False
#######################################################
# Code Change For Activation Checkpointing Stops Here #
#######################################################
if len(body) == 0:
# If the Graph has no non-placeholder nodes, no lines for the body
# have been emitted. To continue to have valid Python code, emit a
# single pass statement
body.append('pass\n')
if len(wrapped_fns) > 0:
wrap_name = add_global('wrap', torch.fx.wrap)
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns])
else:
wrap_stmts = ''
if self._body_transformer:
body = self._body_transformer(body)
for name, value in self.additional_globals():
add_global(name, value)
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
code = ''.join(body)
code = '\n'.join(' ' + line for line in code.split('\n'))
fn_code = f"""
{wrap_stmts}
{prologue}
{code}"""
return PythonCode(fn_code, globals_)

View File

@ -0,0 +1,69 @@
import torch
import pytest
from torch.utils.checkpoint import checkpoint
from torch.fx import GraphModule
from colossalai.fx import ColoTracer
try:
from colossalai.fx.codegen import ActivationCheckpointCodeGen
except:
pass
class MLP(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
def forward(self, x):
return self.linear1(x), self.linear1(x)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.mlp1 = MLP()
self.mlp2 = MLP()
self.linear3 = torch.nn.Linear(4, 4)
def forward(self, x):
y1, y2 = checkpoint(self.mlp1, x)
y3, y4 = checkpoint(self.mlp2, x)
return y1 + y2 + y3 + y4
@pytest.mark.skip("torch 1.12 is required")
def test_act_ckpt_codegen():
# build model and run forward
model = MyModule()
data = torch.rand(4, 4)
non_fx_out = model(data)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
codegen = ActivationCheckpointCodeGen()
graph.set_codegen(codegen)
# check ops are annotated with ckpt
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear1_1', 'mlp2_linear1', 'mlp2_linear1_1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert hasattr(node, 'activation_checkpoint')
# assert checkpoint function will be generated
code = graph.python_code('self').src
assert 'checkpoint_0' in code and 'checkpoint_1' in code
# recompile and verify the outputs are consistent
gm = GraphModule(model, graph)
gm.recompile()
fx_out = gm(data)
assert torch.equal(non_fx_out, fx_out)
if __name__ == '__main__':
test_act_ckpt_codegen()