You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalQA/examples/retrieval_intent_classifica...

99 lines
3.9 KiB

[Feature] Add document retrieval QA (#5020) * add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu>
1 year ago
"""
Script for English retrieval based conversation system backed by LLaMa2
"""
[Feature] Add document retrieval QA (#5020) * add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu>
1 year ago
import argparse
import os
from colossalqa.chain.retrieval_qa.base import RetrievalQA
from colossalqa.data_loader.document_loader import DocumentLoader
from colossalqa.local.llm import ColossalAPI, ColossalLLM
from colossalqa.prompt.prompt import PROMPT_RETRIEVAL_CLASSIFICATION_USE_CASE_ZH
from colossalqa.retriever import CustomRetriever
from colossalqa.text_splitter import ChineseTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2")
parser.add_argument("--model_path", type=str, default=None, help="path to the model")
parser.add_argument("--model_name", type=str, default=None, help="name of the model")
parser.add_argument(
"--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing"
)
args = parser.parse_args()
if not os.path.exists(args.sql_file_path):
os.makedirs(args.sql_file_path)
colossal_api = ColossalAPI.get_api(args.model_name, args.model_path)
llm = ColossalLLM(n=1, api=colossal_api)
# Define the retriever
information_retriever = CustomRetriever(k=2, sql_file_path=args.sql_file_path, verbose=True)
# Setup embedding model locally
embedding = HuggingFaceEmbeddings(
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False}
)
# Load data to vector store
print("Select files for constructing retriever")
documents = []
# define metadata function which is used to format the prompt with value in metadata instead of key,
# the later is langchain's default behavior
def metadata_func(data_sample, additional_fields):
"""
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON
object extracted by the jq_schema and the default metadata and returns
a dict of the updated metadata.
To use key-value format, the metadata_func should be defined as follows:
metadata = {'value': 'a string to be used to format the prompt', 'is_key_value_mapping': True}
"""
metadata = {}
metadata["value"] = f"Question: {data_sample['key']}\nAnswer:{data_sample['value']}"
metadata["is_key_value_mapping"] = True
assert "value" not in additional_fields
assert "is_key_value_mapping" not in additional_fields
metadata.update(additional_fields)
return metadata
retriever_data = DocumentLoader(
[["../data/data_sample/custom_service_classification.json", "CustomerServiceDemo"]],
content_key="key",
metadata_func=metadata_func,
).all_data
# Split
text_splitter = ChineseTextSplitter()
splits = text_splitter.split_documents(retriever_data)
documents.extend(splits)
# Create retriever
information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding)
# Define retrieval chain
retrieval_chain = RetrievalQA.from_chain_type(
llm=llm,
verbose=True,
chain_type="stuff",
retriever=information_retriever,
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_CLASSIFICATION_USE_CASE_ZH},
llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True},
)
# Set disambiguity handler
# Start conversation
while True:
user_input = input("User: ")
if "END" == user_input:
print("Agent: Happy to chat with you )")
break
# 要使用和custom_service_classification.json 里的key 类似的句子做输入
agent_response = retrieval_chain.run(query=user_input, stop=["Human: "])
agent_response = agent_response.split("\n")[0]
print(f"Agent: {agent_response}")