mirror of https://github.com/hpcaitech/ColossalAI
50 lines
1.4 KiB
Python
50 lines
1.4 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from colossalai.nn import CheckpointModule
|
||
|
|
||
|
from .registry import non_distributed_component_funcs
|
||
|
from .utils.dummy_data_generator import DummyDataGenerator
|
||
|
|
||
|
|
||
|
class HangingParamModule(CheckpointModule):
|
||
|
"""
|
||
|
Hanging Parameter: a parameter dose not belong to a leaf Module.
|
||
|
It has subordinate nn.modules and a nn.Parameter.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, checkpoint=False) -> None:
|
||
|
super().__init__(checkpoint=checkpoint)
|
||
|
self.proj1 = nn.Linear(4, 8)
|
||
|
self.weight = nn.Parameter(torch.randn(8, 8))
|
||
|
self.proj2 = nn.Linear(8, 4)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.proj1(x)
|
||
|
x = F.linear(x, self.weight)
|
||
|
x = self.proj2(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class DummyDataLoader(DummyDataGenerator):
|
||
|
|
||
|
def generate(self):
|
||
|
data = torch.rand(16, 4)
|
||
|
label = torch.randint(low=0, high=2, size=(16,))
|
||
|
return data, label
|
||
|
|
||
|
|
||
|
@non_distributed_component_funcs.register(name='hanging_param_model')
|
||
|
def get_training_components():
|
||
|
|
||
|
def model_builder(checkpoint=False):
|
||
|
return HangingParamModule(checkpoint)
|
||
|
|
||
|
trainloader = DummyDataLoader()
|
||
|
testloader = DummyDataLoader()
|
||
|
|
||
|
criterion = torch.nn.CrossEntropyLoss()
|
||
|
from colossalai.nn.optimizer import HybridAdam
|
||
|
return model_builder, trainloader, testloader, HybridAdam, criterion
|