ColossalAI/examples/language/gpt/gemini/train_gpt_demo.py

352 lines
12 KiB
Python
Raw Normal View History

2022-12-29 02:51:42 +00:00
import os
from functools import partial
from time import time
import psutil
import torch
import torch.nn as nn
from commons.model_zoo import model_builder
from commons.utils import get_data, get_profile_context, get_tflops, get_time_stamp
from packaging import version
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext
CAI_VERSION = colossalai.__version__
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
"--distplan",
type=str,
default='CAI_Gemini',
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].",
)
parser.add_argument(
"--tp_degree",
type=int,
default=1,
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--placement",
type=str,
default='cpu',
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--shardinit",
action='store_true',
help=
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="batch size per DP group of training.",
)
parser.add_argument(
"--model_type",
type=str,
default="gpt2_medium",
help="model model scale",
)
parser.add_argument(
"--train_step",
type=int,
default=10,
help="training iterations for test",
)
args = parser.parse_args()
return args
# Parameter Sharding Strategies for Tensor Parallelism
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
param.set_tensor_spec(*spec)
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(0, param, pg)
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(-1, param, pg)
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=''):
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
2022-12-29 02:51:42 +00:00
def get_model_size(model: nn.Module):
total_numel = 0
for module in model.modules():
for p in module.parameters(recurse=False):
total_numel += p.numel()
return total_numel
2022-12-29 04:01:45 +00:00
def model_size_formatter(numel: int) -> str:
GB_SIZE = 10**9
MB_SIZE = 10**6
KB_SIZE = 10**3
if numel >= GB_SIZE:
return f'{numel / GB_SIZE:.1f}B'
elif numel >= MB_SIZE:
return f'{numel / MB_SIZE:.1f}M'
elif numel >= KB_SIZE:
return f'{numel / KB_SIZE:.1f}K'
else:
return str(numel)
2022-12-29 02:51:42 +00:00
def set_cpu_maximum_parallelism():
conf_str = torch.__config__.parallel_info()
inter_str = conf_str.split("hardware_concurrency() : ")[1]
max_concurrency = inter_str.split('\n')[0]
os.environ["OMP_NUM_THREADS"] = max_concurrency
print(f"environmental variable OMP_NUM_THREADS is set to {max_concurrency}.")
# Tensor Parallel
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
"""tensor_parallelize
Sharding the Model Parameters.
Args:
model (torch.nn.Module): a torch module to be sharded
"""
for mn, module in model.named_modules():
for pn, param in module.named_parameters(recurse=False):
# NOTE() a param maybe shared by two modules
if hasattr(param, 'visited'):
continue
# if shard init, then convert param to replica and use the dp-only ProcessGroup
param: ColoParameter = param
param.set_dist_spec(ReplicaSpec())
param.set_process_group(pg)
# shard it w.r.t tp pattern
if 'mlp.c_fc' in mn:
if 'weight' in pn or 'bias' in pn:
2023-06-08 08:09:32 +00:00
split_param_col_tp1d(param, pg) # column slice
# keep the shape of the output from c_fc
param.compute_spec.set_output_replicate(False)
else:
param.set_dist_spec(ReplicaSpec())
elif 'mlp.c_proj' in mn:
if 'weight' in pn:
split_param_row_tp1d(param, pg) # row slice
else:
param.set_dist_spec(ReplicaSpec())
elif 'wte' in mn or 'wpe' in mn:
2023-06-08 08:09:32 +00:00
split_param_col_tp1d(param, pg) # column slice
elif 'c_attn' in mn or 'c_proj' in mn:
2023-06-08 08:09:32 +00:00
split_param_col_tp1d(param, pg) # column slice
else:
param.set_dist_spec(ReplicaSpec())
param.visited = True
def main():
# version check
# this example is supposed to work for versions greater than 0.2.0
assert version.parse(CAI_VERSION) >= version.parse("0.2.0")
2022-12-29 02:51:42 +00:00
set_cpu_maximum_parallelism()
args = parse_args()
# if args.distplan not in ["colossalai", "torch_ddp", "torch_zero", "zero1", "zero2"]:
if args.distplan not in ["CAI_ZeRO1", "CAI_ZeRO2", "CAI_Gemini", "Pytorch_DDP", "Pytorch_ZeRO"]:
raise TypeError(f"{args.distplan} is error")
# batch size per DP degree
BATCH_SIZE = args.batch_size
SEQ_LEN = 1024
VOCAB_SIZE = 50257
NUM_STEPS = args.train_step
2022-12-29 02:51:42 +00:00
WARMUP_STEPS = 1
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps"
assert (NUM_STEPS - WARMUP_STEPS) % 2 == 1, "the number of valid steps should be odd to take the median"
PROF_FLAG = False # The flag of profiling, False by default
disable_existing_loggers()
colossalai.launch_from_torch(config={})
logger = get_dist_logger()
logger.info(f"{args.model_type}, {args.distplan}, batch size {BATCH_SIZE}", ranks=[0])
# build criterion
criterion = GPTLMLoss()
torch.manual_seed(123)
if args.distplan.startswith("CAI"):
# all param must use the same process group.
world_size = torch.distributed.get_world_size()
shard_pg = ProcessGroup(tp_degree=world_size) if args.shardinit else None
default_dist_spec = ShardSpec([-1], [world_size]) if args.shardinit else None
if args.shardinit and args.distplan != "CAI_Gemini":
raise RuntimeError("You can only use shardinit with CAI_Gemini")
# build GPT model
with ColoInitContext(device=get_current_device(),
dtype=torch.half,
default_dist_spec=default_dist_spec,
default_pg=shard_pg):
model = model_builder(args.model_type)(checkpoint=True)
tp_pg = ProcessGroup(tp_degree=args.tp_degree)
# Tensor Parallelism (TP)
# You should notice that v0.1.10 is not compatible with TP degree > 1
if args.tp_degree > 1:
tensor_parallelize(model, tp_pg)
2023-06-08 08:09:32 +00:00
# assign running configurations
if args.distplan == "CAI_ZeRO1":
zero_stage = 1
elif args.distplan == "CAI_ZeRO2":
zero_stage = 2
elif args.distplan == "CAI_Gemini":
zero_stage = 3
else:
raise RuntimeError
plugin = None
if args.distplan.startswith("CAI_ZeRO"):
plugin = LowLevelZeroPlugin(stage=zero_stage,
reduce_bucket_size_in_m=12,
overlap_communication=True,
verbose=True)
elif args.distplan == "CAI_Gemini":
plugin = GeminiPlugin(device=get_current_device(),
placement_policy=args.placement,
pin_memory=True,
strict_ddp_mode=args.tp_degree == 1,
search_range_m=128,
hidden_dim=model.config.n_embd,
gpu_margin_mem_ratio=0.)
else:
raise RuntimeError
# build a highly optimized gpu/cpu optimizer
optimizer = HybridAdam(model.parameters(), lr=1e-3)
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
elif args.distplan.startswith("Pytorch"):
assert args.tp_degree == 1, "The degree of TP should be 1 for DDP examples."
model = model_builder(args.model_type)(checkpoint=True).cuda()
plugin = TorchDDPPlugin()
if args.distplan.endswith("DDP"):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
elif args.distplan.endswith("ZeRO"):
from torch.distributed.optim import ZeroRedundancyOptimizer
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=torch.optim.Adam, lr=1e-3)
else:
raise RuntimeError
# wrap your model and optimizer
booster = Booster(plugin=plugin)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
# model is shared after TP
2022-12-29 02:51:42 +00:00
numel = get_model_size(model)
2022-12-29 04:01:45 +00:00
logger.info(f"the size of testing model size is {model_size_formatter(numel)}.")
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
# = (batch_per_DP_group * dp_degree) * (numel * tp_degree) * seq_len * 8 / (tp_degree * dp_degree)
# = batch_per_DP_group * numel * seq_len * 8
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
torch.cuda.synchronize()
model.train()
2022-12-29 02:51:42 +00:00
tflops_list = []
def train_step():
# we just use randomly generated data here
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
optimizer.zero_grad()
2022-12-29 02:51:42 +00:00
start = time()
outputs = model(input_ids, attn_mask)
loss = criterion(outputs, input_ids)
2022-12-29 02:51:42 +00:00
torch.cuda.synchronize()
fwd_end = time()
fwd_time = fwd_end - start
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Forward '), ranks=[0])
booster.backward(loss, optimizer)
2022-12-29 02:51:42 +00:00
torch.cuda.synchronize()
bwd_end = time()
bwd_time = bwd_end - fwd_end
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Backward '), ranks=[0])
optimizer.step()
torch.cuda.synchronize()
2022-12-29 02:51:42 +00:00
optim_time = time() - bwd_end
step_time = time() - start
2022-12-29 02:51:42 +00:00
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Optimizer step '), ranks=[0])
2022-12-29 02:51:42 +00:00
step_tflops = get_tflops_func(step_time)
logger.info(
f"[{n + 1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
ranks=[0],
)
if n >= WARMUP_STEPS:
tflops_list.append(step_tflops)
demo_profiler = get_profile_context(PROF_FLAG,
WARMUP_STEPS,
NUM_STEPS - WARMUP_STEPS,
save_dir=f"profile/{get_time_stamp()}-demo")
with demo_profiler as prof:
for n in range(NUM_STEPS):
train_step()
prof.step()
2022-12-29 02:51:42 +00:00
tflops_list.sort()
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
torch.cuda.synchronize()
if __name__ == '__main__':
main()