|
|
|
@ -5,12 +5,13 @@ import psutil
|
|
|
|
|
import torch |
|
|
|
|
import torch.nn as nn |
|
|
|
|
from packaging import version |
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
|
|
|
|
|
|
|
import colossalai |
|
|
|
|
from colossalai.logging import disable_existing_loggers, get_dist_logger |
|
|
|
|
from colossalai.nn.optimizer import HybridAdam |
|
|
|
|
from colossalai.nn.parallel import ZeroDDP |
|
|
|
|
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec |
|
|
|
|
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec |
|
|
|
|
from colossalai.utils import get_current_device |
|
|
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext |
|
|
|
|
from colossalai.zero import ZeroOptimizer |
|
|
|
@ -19,17 +20,30 @@ from transformers import GPT2Config, GPT2LMHeadModel
|
|
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
|
|
parser = colossalai.get_default_parser() |
|
|
|
|
parser.add_argument( |
|
|
|
|
"--distplan", |
|
|
|
|
type=str, |
|
|
|
|
default='colossalai', |
|
|
|
|
help="The distributed plan [colossalai, ddp, zero].", |
|
|
|
|
) |
|
|
|
|
parser.add_argument( |
|
|
|
|
"--tp_degree", |
|
|
|
|
type=int, |
|
|
|
|
default=1, |
|
|
|
|
help="Tensor Parallelism Degree.", |
|
|
|
|
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.", |
|
|
|
|
) |
|
|
|
|
parser.add_argument( |
|
|
|
|
"--placement", |
|
|
|
|
type=str, |
|
|
|
|
default='cpu', |
|
|
|
|
help="Placement Policy for Gemini.", |
|
|
|
|
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", |
|
|
|
|
) |
|
|
|
|
parser.add_argument( |
|
|
|
|
"--shardinit", |
|
|
|
|
type=bool, |
|
|
|
|
default=False, |
|
|
|
|
help= |
|
|
|
|
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.", |
|
|
|
|
) |
|
|
|
|
args = parser.parse_args() |
|
|
|
|
return args |
|
|
|
@ -38,8 +52,6 @@ def parse_args():
|
|
|
|
|
## Parameter Sharding Strategies for Tensor Parallelism |
|
|
|
|
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup): |
|
|
|
|
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) |
|
|
|
|
if param.process_group.tp_world_size() == 1: |
|
|
|
|
param.set_process_group(pg) |
|
|
|
|
param.set_tensor_spec(*spec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -136,21 +148,30 @@ def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
|
|
|
|
|
""" |
|
|
|
|
for mn, module in model.named_modules(): |
|
|
|
|
for pn, param in module.named_parameters(recurse=False): |
|
|
|
|
# set process group for all parameters |
|
|
|
|
param.set_process_group(pg) |
|
|
|
|
|
|
|
|
|
# NOTE() a param maybe shared by tow modules |
|
|
|
|
if hasattr(param, 'visited'): |
|
|
|
|
continue |
|
|
|
|
param.set_dist_spec(ReplicaSpec()) |
|
|
|
|
if 'mlp.c_fc' in mn: |
|
|
|
|
if 'weight' in pn or 'bias' in pn: |
|
|
|
|
split_param_col_tp1d(param, pg) # colmn slice |
|
|
|
|
# keep the shape of the output from c_fc |
|
|
|
|
param.compute_spec.set_output_replicate(False) |
|
|
|
|
else: |
|
|
|
|
param.set_dist_spec(ReplicaSpec()) |
|
|
|
|
elif 'mlp.c_proj' in mn: |
|
|
|
|
if 'weight' in pn: |
|
|
|
|
split_param_row_tp1d(param, pg) # row slice |
|
|
|
|
else: |
|
|
|
|
param.set_dist_spec(ReplicaSpec()) |
|
|
|
|
elif 'wte' in mn or 'wpe' in mn: |
|
|
|
|
split_param_col_tp1d(param, pg) # colmn slice |
|
|
|
|
elif 'c_attn' in mn or 'c_proj' in mn: |
|
|
|
|
split_param_col_tp1d(param, pg) # colmn slice |
|
|
|
|
else: |
|
|
|
|
param.set_dist_spec(ReplicaSpec()) |
|
|
|
|
|
|
|
|
|
param.visited = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Gemini + ZeRO DDP |
|
|
|
@ -188,32 +209,49 @@ def main():
|
|
|
|
|
disable_existing_loggers() |
|
|
|
|
colossalai.launch_from_torch(config={}) |
|
|
|
|
|
|
|
|
|
pg = ProcessGroup(tp_degree=args.tp_degree) |
|
|
|
|
|
|
|
|
|
logger = get_dist_logger() |
|
|
|
|
logger.info(get_mem_info(), ranks=[0]) |
|
|
|
|
|
|
|
|
|
# build GPT model |
|
|
|
|
with ColoInitContext(device=get_current_device()): |
|
|
|
|
model = gpt2_medium(checkpoint=True) |
|
|
|
|
|
|
|
|
|
numel = sum([p.numel() for p in model.parameters()]) |
|
|
|
|
logger.info(f'Model numel: {numel}', ranks=[0]) |
|
|
|
|
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN) |
|
|
|
|
|
|
|
|
|
# Tensor Parallelism (TP) |
|
|
|
|
tensor_parallelize(model, pg) |
|
|
|
|
# Gemini + ZeRO DP, Note it must be used after TP |
|
|
|
|
model = gemini_zero_dpp(model, pg, args.placement) |
|
|
|
|
logger.info(get_mem_info(prefix='After init model, '), ranks=[0]) |
|
|
|
|
logger.info(f"using dist plan {args.distplan}", ranks=[0]) |
|
|
|
|
|
|
|
|
|
# build criterion |
|
|
|
|
criterion = GPTLMLoss() |
|
|
|
|
|
|
|
|
|
# build optimizer |
|
|
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3) |
|
|
|
|
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**5) |
|
|
|
|
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0]) |
|
|
|
|
torch.manual_seed(123) |
|
|
|
|
if args.distplan == "colossalai": |
|
|
|
|
# all param must use the same process group. |
|
|
|
|
default_pg = ProcessGroup(tp_degree=args.tp_degree) |
|
|
|
|
default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None |
|
|
|
|
|
|
|
|
|
# build GPT model |
|
|
|
|
with ColoInitContext(device='cuda', default_dist_spec=default_dist_spec, default_pg=default_pg): |
|
|
|
|
model = gpt2_medium(checkpoint=True) |
|
|
|
|
|
|
|
|
|
pg = default_pg |
|
|
|
|
# Tensor Parallelism (TP) |
|
|
|
|
tensor_parallelize(model, pg) |
|
|
|
|
# Gemini + ZeRO DP, Note it must be used after TP |
|
|
|
|
model = gemini_zero_dpp(model, pg, args.placement) |
|
|
|
|
|
|
|
|
|
# build optimizer |
|
|
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3) |
|
|
|
|
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**5) |
|
|
|
|
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0]) |
|
|
|
|
|
|
|
|
|
elif args.distplan == "ddp": |
|
|
|
|
model = gpt2_medium(checkpoint=True).cuda() |
|
|
|
|
ddp_model = DDP(model) |
|
|
|
|
optimizer = torch.optim.Adam(ddp_model.parameters(), lr=0.01) |
|
|
|
|
|
|
|
|
|
elif args.distplan == "zero": |
|
|
|
|
from torch.distributed.optim import ZeroRedundancyOptimizer |
|
|
|
|
model = gpt2_medium(checkpoint=True).cuda() |
|
|
|
|
ddp_model = DDP(model) |
|
|
|
|
optimizer = ZeroRedundancyOptimizer(ddp_model.parameters(), optimizer_class=torch.optim.Adam, lr=0.01) |
|
|
|
|
else: |
|
|
|
|
raise TypeError(f"{args.distplan} is error") |
|
|
|
|
|
|
|
|
|
numel = sum([p.numel() for p in model.parameters()]) |
|
|
|
|
logger.info(get_mem_info(prefix='After init model, '), ranks=[0]) |
|
|
|
|
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN) |
|
|
|
|
|
|
|
|
|
torch.cuda.synchronize() |
|
|
|
|
model.train() |
|
|
|
@ -225,7 +263,11 @@ def main():
|
|
|
|
|
outputs = model(input_ids, attn_mask) |
|
|
|
|
loss = criterion(outputs, input_ids) |
|
|
|
|
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Forward '), ranks=[0]) |
|
|
|
|
optimizer.backward(loss) |
|
|
|
|
if args.distplan == "colossalai": |
|
|
|
|
optimizer.backward(loss) |
|
|
|
|
elif args.distplan in ["ddp", "zero"]: |
|
|
|
|
loss.backward() |
|
|
|
|
|
|
|
|
|
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Backward '), ranks=[0]) |
|
|
|
|
optimizer.step() |
|
|
|
|
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Optimizer step '), ranks=[0]) |
|
|
|
|