mirror of https://github.com/hpcaitech/ColossalAI
[example] enhance GPT demo (#1959)
* [example] enhence GPT demo * Update README.md Co-authored-by: binmakeswell <binmakeswell@gmail.com>pull/1960/head^2
parent
acba142929
commit
60abd86d6a
|
@ -1,14 +1,15 @@
|
|||
## Overview
|
||||
This example shows how to use ColossalAI to run huggingface GPT training in distributed manners.
|
||||
This example shows how to use Colossal-AI to run huggingface GPT training in distributed manners.
|
||||
|
||||
## GPT
|
||||
We use the huggingface transformers GPT2 model. The input data is randonly generated.
|
||||
We use the GPT2 model from huggingface transformers. The input data is randonly generated.
|
||||
|
||||
## Our Modifications
|
||||
We adapt the OPT training code to ColossalAI by leveraging Gemini and ZeRO DDP.
|
||||
The `train_gpt_demo.py` provides three distributed plans, i.e. Colossal-AI, PyTorch DDP and ZeRO.
|
||||
The Colossal-AI leverages Tensor Parallel and Gemini.
|
||||
|
||||
## Quick Start
|
||||
You can launch training by using the following bash script
|
||||
You can launch training by using the following bash script.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
|
|
|
@ -1 +1,10 @@
|
|||
env OMP_NUM_THREADS=16 torchrun --standalone --nproc_per_node=4 train_gpt_demo.py --tp_degree=2 --placement='cpu' 2>&1 | tee run.log
|
||||
# distplan in ["colossalai", "zero", "ddp"]
|
||||
export DISTPAN="colossalai"
|
||||
|
||||
# The following options only valid when DISTPAN="colossalai"
|
||||
export TPDEGREE=2
|
||||
export GPUNUM=4
|
||||
export PLACEMENT='cpu'
|
||||
export USE_SHARD_INIT=False
|
||||
|
||||
env OMP_NUM_THREADS=16 torchrun --standalone --nproc_per_node=${GPUNUM} train_gpt_demo.py --tp_degree=${TPDEGREE} --placement ${PLACEMENT} --shardinit ${USE_SHARD_INIT} --distplan ${DISTPAN} 2>&1 | tee run.log
|
||||
|
|
|
@ -5,12 +5,13 @@ import psutil
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from packaging import version
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.nn.parallel import ZeroDDP
|
||||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
|
||||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from colossalai.zero import ZeroOptimizer
|
||||
|
@ -19,17 +20,30 @@ from transformers import GPT2Config, GPT2LMHeadModel
|
|||
|
||||
def parse_args():
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument(
|
||||
"--distplan",
|
||||
type=str,
|
||||
default='colossalai',
|
||||
help="The distributed plan [colossalai, ddp, zero].",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tp_degree",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Tensor Parallelism Degree.",
|
||||
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--placement",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Placement Policy for Gemini.",
|
||||
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--shardinit",
|
||||
type=bool,
|
||||
default=False,
|
||||
help=
|
||||
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
@ -38,8 +52,6 @@ def parse_args():
|
|||
## Parameter Sharding Strategies for Tensor Parallelism
|
||||
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
|
||||
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
||||
if param.process_group.tp_world_size() == 1:
|
||||
param.set_process_group(pg)
|
||||
param.set_tensor_spec(*spec)
|
||||
|
||||
|
||||
|
@ -136,21 +148,30 @@ def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
|
|||
"""
|
||||
for mn, module in model.named_modules():
|
||||
for pn, param in module.named_parameters(recurse=False):
|
||||
# set process group for all parameters
|
||||
param.set_process_group(pg)
|
||||
|
||||
# NOTE() a param maybe shared by tow modules
|
||||
if hasattr(param, 'visited'):
|
||||
continue
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
if 'mlp.c_fc' in mn:
|
||||
if 'weight' in pn or 'bias' in pn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
# keep the shape of the output from c_fc
|
||||
param.compute_spec.set_output_replicate(False)
|
||||
else:
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
elif 'mlp.c_proj' in mn:
|
||||
if 'weight' in pn:
|
||||
split_param_row_tp1d(param, pg) # row slice
|
||||
else:
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
elif 'wte' in mn or 'wpe' in mn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
elif 'c_attn' in mn or 'c_proj' in mn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
else:
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
|
||||
param.visited = True
|
||||
|
||||
|
||||
# Gemini + ZeRO DDP
|
||||
|
@ -188,32 +209,49 @@ def main():
|
|||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch(config={})
|
||||
|
||||
pg = ProcessGroup(tp_degree=args.tp_degree)
|
||||
|
||||
logger = get_dist_logger()
|
||||
logger.info(get_mem_info(), ranks=[0])
|
||||
|
||||
# build GPT model
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = gpt2_medium(checkpoint=True)
|
||||
|
||||
numel = sum([p.numel() for p in model.parameters()])
|
||||
logger.info(f'Model numel: {numel}', ranks=[0])
|
||||
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
|
||||
|
||||
# Tensor Parallelism (TP)
|
||||
tensor_parallelize(model, pg)
|
||||
# Gemini + ZeRO DP, Note it must be used after TP
|
||||
model = gemini_zero_dpp(model, pg, args.placement)
|
||||
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
|
||||
logger.info(f"using dist plan {args.distplan}", ranks=[0])
|
||||
|
||||
# build criterion
|
||||
criterion = GPTLMLoss()
|
||||
|
||||
# build optimizer
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**5)
|
||||
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
|
||||
torch.manual_seed(123)
|
||||
if args.distplan == "colossalai":
|
||||
# all param must use the same process group.
|
||||
default_pg = ProcessGroup(tp_degree=args.tp_degree)
|
||||
default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None
|
||||
|
||||
# build GPT model
|
||||
with ColoInitContext(device='cuda', default_dist_spec=default_dist_spec, default_pg=default_pg):
|
||||
model = gpt2_medium(checkpoint=True)
|
||||
|
||||
pg = default_pg
|
||||
# Tensor Parallelism (TP)
|
||||
tensor_parallelize(model, pg)
|
||||
# Gemini + ZeRO DP, Note it must be used after TP
|
||||
model = gemini_zero_dpp(model, pg, args.placement)
|
||||
|
||||
# build optimizer
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**5)
|
||||
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
|
||||
|
||||
elif args.distplan == "ddp":
|
||||
model = gpt2_medium(checkpoint=True).cuda()
|
||||
ddp_model = DDP(model)
|
||||
optimizer = torch.optim.Adam(ddp_model.parameters(), lr=0.01)
|
||||
|
||||
elif args.distplan == "zero":
|
||||
from torch.distributed.optim import ZeroRedundancyOptimizer
|
||||
model = gpt2_medium(checkpoint=True).cuda()
|
||||
ddp_model = DDP(model)
|
||||
optimizer = ZeroRedundancyOptimizer(ddp_model.parameters(), optimizer_class=torch.optim.Adam, lr=0.01)
|
||||
else:
|
||||
raise TypeError(f"{args.distplan} is error")
|
||||
|
||||
numel = sum([p.numel() for p in model.parameters()])
|
||||
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
|
||||
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
model.train()
|
||||
|
@ -225,7 +263,11 @@ def main():
|
|||
outputs = model(input_ids, attn_mask)
|
||||
loss = criterion(outputs, input_ids)
|
||||
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Forward '), ranks=[0])
|
||||
optimizer.backward(loss)
|
||||
if args.distplan == "colossalai":
|
||||
optimizer.backward(loss)
|
||||
elif args.distplan in ["ddp", "zero"]:
|
||||
loss.backward()
|
||||
|
||||
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Backward '), ranks=[0])
|
||||
optimizer.step()
|
||||
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Optimizer step '), ranks=[0])
|
||||
|
|
Loading…
Reference in New Issue