2021-10-28 16:21:23 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
2023-09-11 08:24:28 +00:00
|
|
|
|
2023-09-18 08:31:06 +00:00
|
|
|
from colossalai.legacy.core import global_context as gpc
|
|
|
|
from colossalai.legacy.global_variables import tensor_parallel_env as env
|
2021-12-27 07:04:32 +00:00
|
|
|
|
2021-12-29 15:32:10 +00:00
|
|
|
from ..utils import divide
|
|
|
|
|
|
|
|
|
|
|
|
def set_parallel_input(input_parallel: bool):
|
2022-02-14 03:15:02 +00:00
|
|
|
env.parallel_input_1d = input_parallel
|
2021-12-29 15:32:10 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_parallel_input():
|
2022-02-14 03:15:02 +00:00
|
|
|
return env.parallel_input_1d
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank):
|
|
|
|
index_f = rank * per_partition_vocab_size
|
|
|
|
index_l = index_f + per_partition_vocab_size
|
|
|
|
return index_f, index_l
|
|
|
|
|
|
|
|
|
|
|
|
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
|
|
|
|
per_partition_vocab_size = divide(global_vocab_size, world_size)
|
|
|
|
return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank)
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
def _reduce(input_, parallel_mode):
|
|
|
|
# skip if only one rank involved
|
|
|
|
if gpc.get_world_size(parallel_mode) == 1:
|
|
|
|
return input_
|
2022-06-08 04:04:59 +00:00
|
|
|
group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode)
|
|
|
|
dist.all_reduce(input_, group=group)
|
2021-12-27 07:04:32 +00:00
|
|
|
|
|
|
|
return input_
|
|
|
|
|
|
|
|
|
|
|
|
def _split(input_, parallel_mode, dim=-1):
|
|
|
|
# skip if only one rank involved
|
|
|
|
world_size = gpc.get_world_size(parallel_mode)
|
|
|
|
if world_size == 1:
|
|
|
|
return input_
|
|
|
|
|
|
|
|
# Split along last dimension.
|
|
|
|
dim_size = input_.size(dim)
|
2023-09-19 06:20:26 +00:00
|
|
|
assert dim_size % world_size == 0, (
|
|
|
|
f"The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), "
|
|
|
|
f"cannot split tensor evenly"
|
|
|
|
)
|
2021-12-27 07:04:32 +00:00
|
|
|
|
|
|
|
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
|
|
|
|
rank = gpc.get_local_rank(parallel_mode)
|
|
|
|
output = tensor_list[rank].contiguous()
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def _gather(input_, parallel_mode, dim=-1):
|
|
|
|
# skip if only one rank involved
|
|
|
|
world_size = gpc.get_world_size(parallel_mode)
|
|
|
|
if world_size == 1:
|
|
|
|
return input_
|
|
|
|
|
|
|
|
# all gather
|
|
|
|
rank = gpc.get_local_rank(parallel_mode)
|
|
|
|
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
|
|
|
tensor_list[rank] = input_
|
2022-06-08 04:04:59 +00:00
|
|
|
group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode)
|
|
|
|
torch.distributed.all_gather(tensor_list, input_, group=group)
|
2021-12-27 07:04:32 +00:00
|
|
|
|
|
|
|
# concat
|
|
|
|
output = torch.cat(tensor_list, dim=dim).contiguous()
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class _ReduceGrad(torch.autograd.Function):
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
|
|
|
Pass the input to the model parallel region.
|
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
|
|
|
input_: input matrix.
|
|
|
|
parallel_mode: parallel mode.
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
2022-03-10 09:15:59 +00:00
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
@staticmethod
|
|
|
|
def symbolic(graph, input_):
|
|
|
|
return input_
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, input_, parallel_mode):
|
|
|
|
ctx.mode = parallel_mode
|
|
|
|
return input_
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
return _reduce(grad_output, ctx.mode), None
|
|
|
|
|
|
|
|
|
|
|
|
class _ReduceInput(torch.autograd.Function):
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
|
|
|
All-reduce the input from the model parallel region.
|
2022-03-25 05:02:39 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
input_: input matrix.
|
|
|
|
parallel_mode: parallel mode.
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
2022-03-10 09:15:59 +00:00
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
@staticmethod
|
|
|
|
def symbolic(graph, input_):
|
|
|
|
return _reduce(input_)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, input_, parallel_mode):
|
|
|
|
return _reduce(input_, parallel_mode)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
return grad_output, None
|
|
|
|
|
|
|
|
|
|
|
|
class _SplitForwardGatherBackward(torch.autograd.Function):
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
|
|
|
Split the input and keep only the corresponding chuck to the rank.
|
2023-09-11 08:24:28 +00:00
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
|
|
|
input_: input matrix.
|
|
|
|
parallel_mode: parallel mode.
|
|
|
|
dim: dimension
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
2022-03-10 09:15:59 +00:00
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
@staticmethod
|
|
|
|
def symbolic(graph, input_):
|
|
|
|
return _split(input_)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, input_, parallel_mode, dim):
|
|
|
|
ctx.mode = parallel_mode
|
|
|
|
ctx.dim = dim
|
|
|
|
return _split(input_, parallel_mode, dim)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
return _gather(grad_output, ctx.mode, ctx.dim), None, None
|
|
|
|
|
|
|
|
|
|
|
|
class _GatherForwardSplitBackward(torch.autograd.Function):
|
2022-03-25 05:02:39 +00:00
|
|
|
"""Gather the input from model parallel region and concatenate.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_: input matrix.
|
|
|
|
parallel_mode: parallel mode.
|
|
|
|
dim: dimension
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
2022-03-10 09:15:59 +00:00
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
@staticmethod
|
|
|
|
def symbolic(graph, input_):
|
|
|
|
return _gather(input_)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, input_, parallel_mode, dim):
|
|
|
|
ctx.mode = parallel_mode
|
|
|
|
ctx.dim = dim
|
|
|
|
return _gather(input_, parallel_mode, dim)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
return _split(grad_output, ctx.mode, ctx.dim), None, None
|
|
|
|
|
|
|
|
|
|
|
|
def reduce_grad(input_, parallel_mode):
|
|
|
|
return _ReduceGrad.apply(input_, parallel_mode)
|
|
|
|
|
|
|
|
|
|
|
|
def reduce_input(input_, parallel_mode):
|
|
|
|
return _ReduceInput.apply(input_, parallel_mode)
|
|
|
|
|
|
|
|
|
|
|
|
def split_forward_gather_backward(input_, parallel_mode, dim):
|
|
|
|
return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim)
|
|
|
|
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
def gather_forward_split_backward(input_, parallel_mode, dim):
|
|
|
|
return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)
|