mirror of https://github.com/hpcaitech/ColossalAI
fix format (#376)
parent
ce886a9062
commit
5a4a3b77d9
|
@ -7,7 +7,7 @@ except:
|
|||
|
||||
|
||||
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
|
||||
r"""
|
||||
r"""
|
||||
Layernorm
|
||||
|
||||
:param input: input maxtrix
|
||||
|
@ -20,27 +20,26 @@ class FusedLayerNormAffineFunction1D(torch.autograd.Function):
|
|||
:param eps: a value added to the denominator for numerical stability
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
||||
ctx.normalized_shape = normalized_shape
|
||||
ctx.eps = eps
|
||||
input_ = input.contiguous()
|
||||
weight_ = weight.contiguous()
|
||||
bias_ = bias.contiguous()
|
||||
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(
|
||||
input_, ctx.normalized_shape, weight_, bias_, ctx.eps)
|
||||
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
||||
return output
|
||||
@staticmethod
|
||||
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
||||
ctx.normalized_shape = normalized_shape
|
||||
ctx.eps = eps
|
||||
input_ = input.contiguous()
|
||||
weight_ = weight.contiguous()
|
||||
bias_ = bias.contiguous()
|
||||
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(input_, ctx.normalized_shape, weight_,
|
||||
bias_, ctx.eps)
|
||||
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
||||
grad_input = grad_weight = grad_bias = None
|
||||
grad_input, grad_weight, grad_bias \
|
||||
= fused_mix_prec_layer_norm_cuda.backward_affine(
|
||||
grad_output.contiguous(), mean, invvar,
|
||||
input_, ctx.normalized_shape,
|
||||
weight_, bias_, ctx.eps)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
||||
grad_input = grad_weight = grad_bias = None
|
||||
grad_input, grad_weight, grad_bias \
|
||||
= fused_mix_prec_layer_norm_cuda.backward_affine(
|
||||
grad_output.contiguous(), mean, invvar,
|
||||
input_, ctx.normalized_shape,
|
||||
weight_, bias_, ctx.eps)
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None
|
||||
return grad_input, grad_weight, grad_bias, None, None
|
||||
|
|
|
@ -81,6 +81,7 @@ class _ReduceGrad(torch.autograd.Function):
|
|||
:param input_: input matrix
|
||||
:param parallel_mode: parallel mode
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return input_
|
||||
|
@ -102,6 +103,7 @@ class _ReduceInput(torch.autograd.Function):
|
|||
:param input_: input matrix
|
||||
:param parallel_mode: parallel mode
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return _reduce(input_)
|
||||
|
@ -123,6 +125,7 @@ class _SplitForwardGatherBackward(torch.autograd.Function):
|
|||
:param parallel_mode: parallel mode
|
||||
:param dim: dimension
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return _split(input_)
|
||||
|
@ -146,6 +149,7 @@ class _GatherForwardSplitBackward(torch.autograd.Function):
|
|||
:param parallel_mode: parallel mode
|
||||
:param dim: dimension
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return _gather(input_)
|
||||
|
|
Loading…
Reference in New Issue