mirror of https://github.com/hpcaitech/ColossalAI
136 lines
5.9 KiB
Python
136 lines
5.9 KiB
Python
|
from abc import ABC
|
||
|
from datetime import datetime
|
||
|
from typing import Optional
|
||
|
|
||
|
import pandas as pd
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
from torch.optim import Optimizer, lr_scheduler
|
||
|
from torch.utils.data import DataLoader, Dataset, DistributedSampler
|
||
|
from tqdm import tqdm
|
||
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
||
|
|
||
|
from .strategies import Strategy
|
||
|
from .utils import is_rank_0
|
||
|
|
||
|
|
||
|
class RewardModelTrainer(ABC):
|
||
|
"""
|
||
|
Trainer to use while training reward model.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.Module): the model to train
|
||
|
strategy (Strategy): the strategy to use for training
|
||
|
optim(Optimizer): the optimizer to use for training
|
||
|
loss_fn (callable): the loss function to use for training
|
||
|
train_dataset (Dataset): the dataset to use for training
|
||
|
valid_dataset (Dataset): the dataset to use for validation
|
||
|
eval_dataset (Dataset): the dataset to use for evaluation
|
||
|
batch_size (int, defaults to 1): the batch size while training
|
||
|
max_epochs (int, defaults to 2): the number of epochs to train
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model,
|
||
|
strategy: Strategy,
|
||
|
optim: Optimizer,
|
||
|
loss_fn,
|
||
|
train_dataset: Dataset,
|
||
|
valid_dataset: Dataset,
|
||
|
eval_dataset: Dataset,
|
||
|
batch_size: int = 1,
|
||
|
max_epochs: int = 1,
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.strategy = strategy
|
||
|
self.epochs = max_epochs
|
||
|
train_sampler = None
|
||
|
|
||
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
||
|
train_sampler = DistributedSampler(train_dataset, shuffle=True, seed=42, drop_last=True)
|
||
|
self.train_dataloader = DataLoader(train_dataset,
|
||
|
shuffle=(train_sampler is None),
|
||
|
sampler=train_sampler,
|
||
|
batch_size=batch_size)
|
||
|
self.valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=True)
|
||
|
self.eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size, shuffle=True)
|
||
|
|
||
|
self.model = strategy.setup_model(model)
|
||
|
self.loss_fn = loss_fn
|
||
|
self.optimizer = strategy.setup_optimizer(optim, self.model)
|
||
|
self.scheduler = lr_scheduler.CosineAnnealingLR(self.optimizer, self.train_dataloader.__len__() // 100)
|
||
|
|
||
|
def eval_acc(self, dataloader):
|
||
|
dist = 0
|
||
|
on = 0
|
||
|
cnt = 0
|
||
|
self.model.eval()
|
||
|
with torch.no_grad():
|
||
|
for chosen_ids, c_mask, reject_ids, r_mask in dataloader:
|
||
|
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
|
||
|
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
|
||
|
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
|
||
|
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
|
||
|
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
|
||
|
reject_reward = self.model(reject_ids, attention_mask=r_mask)
|
||
|
for i in range(len(chosen_reward)):
|
||
|
cnt += 1
|
||
|
if chosen_reward[i] > reject_reward[i]:
|
||
|
on += 1
|
||
|
dist += (chosen_reward - reject_reward).mean().item()
|
||
|
dist_mean = dist / len(dataloader)
|
||
|
acc = on / cnt
|
||
|
self.model.train()
|
||
|
return dist_mean, acc
|
||
|
|
||
|
def fit(self):
|
||
|
time = datetime.now()
|
||
|
epoch_bar = tqdm(range(self.epochs), desc='Train epoch', disable=not is_rank_0())
|
||
|
for epoch in range(self.epochs):
|
||
|
step_bar = tqdm(range(self.train_dataloader.__len__()),
|
||
|
desc='Train step of epoch %d' % epoch,
|
||
|
disable=not is_rank_0())
|
||
|
# train
|
||
|
self.model.train()
|
||
|
cnt = 0
|
||
|
acc = 0
|
||
|
dist = 0
|
||
|
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
|
||
|
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
|
||
|
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
|
||
|
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
|
||
|
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
|
||
|
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
|
||
|
reject_reward = self.model(reject_ids, attention_mask=r_mask)
|
||
|
loss = self.loss_fn(chosen_reward, reject_reward)
|
||
|
self.strategy.backward(loss, self.model, self.optimizer)
|
||
|
self.strategy.optimizer_step(self.optimizer)
|
||
|
self.optimizer.zero_grad()
|
||
|
cnt += 1
|
||
|
if cnt == 100:
|
||
|
self.scheduler.step()
|
||
|
dist, acc = self.eval_acc(self.valid_dataloader)
|
||
|
cnt = 0
|
||
|
if is_rank_0():
|
||
|
log = pd.DataFrame([[step_bar.n, loss.item(), dist, acc]],
|
||
|
columns=['step', 'loss', 'dist', 'acc'])
|
||
|
log.to_csv('log_%s.csv' % time, mode='a', header=False, index=False)
|
||
|
step_bar.update()
|
||
|
step_bar.set_postfix({'dist': dist, 'acc': acc})
|
||
|
|
||
|
# eval
|
||
|
dist, acc = self.eval_acc(self.eval_dataloader)
|
||
|
if is_rank_0():
|
||
|
log = pd.DataFrame([[step_bar.n, loss.item(), dist, acc]], columns=['step', 'loss', 'dist', 'acc'])
|
||
|
log.to_csv('log.csv', mode='a', header=False, index=False)
|
||
|
epoch_bar.update()
|
||
|
step_bar.set_postfix({'dist': dist, 'acc': acc})
|
||
|
step_bar.close()
|
||
|
|
||
|
def save_model(self,
|
||
|
path: str,
|
||
|
only_rank0: bool = False,
|
||
|
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
|
||
|
self.strategy.save_model(model=self.model, path=path, only_rank0=only_rank0, tokenizer=tokenizer)
|