mirror of https://github.com/hpcaitech/ColossalAI
49 lines
1.6 KiB
Python
49 lines
1.6 KiB
Python
|
import pytest
|
||
|
import torch
|
||
|
from packaging import version
|
||
|
|
||
|
try:
|
||
|
import triton
|
||
|
import triton.language as tl
|
||
|
|
||
|
from colossalai.kernel.triton.token_attention_kernel import token_attn_softmax_fwd
|
||
|
HAS_TRITON = True
|
||
|
except ImportError:
|
||
|
HAS_TRITON = False
|
||
|
print("please install triton from https://github.com/openai/triton")
|
||
|
|
||
|
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
|
||
|
reason="triton requires cuda version to be higher than 11.4")
|
||
|
def test_softmax():
|
||
|
|
||
|
import torch
|
||
|
|
||
|
batch_size, seq_len, head_num, head_dim = 4, 1025, 12, 128
|
||
|
|
||
|
dtype = torch.float16
|
||
|
|
||
|
Logics = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda").normal_(mean=0.1, std=10)
|
||
|
ProbOut = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2)
|
||
|
|
||
|
kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
|
||
|
kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
|
||
|
|
||
|
for i in range(batch_size):
|
||
|
kv_cache_start_loc[i] = i * seq_len
|
||
|
kv_cache_seq_len[i] = seq_len
|
||
|
|
||
|
token_attn_softmax_fwd(Logics, kv_cache_start_loc, kv_cache_seq_len, ProbOut, seq_len)
|
||
|
|
||
|
torch_out = Logics.reshape(head_num * batch_size, -1).softmax(-1).reshape(head_num, batch_size * seq_len)
|
||
|
o = ProbOut
|
||
|
print("max ", torch.max(torch.abs(torch_out - o)))
|
||
|
print("mean ", torch.mean(torch.abs(torch_out - o)))
|
||
|
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_softmax()
|