mirror of https://github.com/hpcaitech/ColossalAI
68 lines
2.5 KiB
Python
68 lines
2.5 KiB
Python
|
import time
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
from packaging import version
|
||
|
|
||
|
try:
|
||
|
import triton
|
||
|
import triton.language as tl
|
||
|
|
||
|
from colossalai.kernel.triton.token_attention_kernel import token_attention_fwd
|
||
|
HAS_TRITON = True
|
||
|
except ImportError:
|
||
|
HAS_TRITON = False
|
||
|
print("please install triton from https://github.com/openai/triton")
|
||
|
|
||
|
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
|
||
|
|
||
|
|
||
|
def torch_att(xq, xk, xv, bs, seqlen, num_head, head_dim):
|
||
|
xq = xq.view(bs, 1, num_head, head_dim)
|
||
|
xk = xk.view(bs, seqlen, num_head, head_dim)
|
||
|
xv = xv.view(bs, seqlen, num_head, head_dim)
|
||
|
|
||
|
logics = torch.sum(xq * xk, dim=3, keepdim=False) * 1 / (head_dim**0.5)
|
||
|
prob = torch.softmax(logics, dim=1)
|
||
|
prob = prob.view(bs, seqlen, num_head, 1)
|
||
|
|
||
|
return torch.sum(prob * xv, dim=1, keepdim=False)
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
|
||
|
reason="triton requires cuda version to be higher than 11.4")
|
||
|
def test():
|
||
|
|
||
|
Z, head_num, seq_len, head_dim = 22, 112 // 8, 2048, 128
|
||
|
dtype = torch.float16
|
||
|
q = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
|
||
|
k = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2)
|
||
|
v = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2)
|
||
|
o = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2)
|
||
|
alibi = torch.zeros((head_num,), dtype=torch.float32, device="cuda")
|
||
|
|
||
|
max_kv_cache_len = seq_len
|
||
|
kv_cache_start_loc = torch.zeros((Z,), dtype=torch.int32, device="cuda")
|
||
|
kv_cache_loc = torch.zeros((Z, seq_len), dtype=torch.int32, device="cuda")
|
||
|
kv_cache_seq_len = torch.ones((Z,), dtype=torch.int32, device="cuda")
|
||
|
|
||
|
kv_cache_seq_len[:] = seq_len
|
||
|
kv_cache_start_loc[0] = 0
|
||
|
kv_cache_start_loc[1] = seq_len
|
||
|
kv_cache_start_loc[2] = 2 * seq_len
|
||
|
kv_cache_start_loc[3] = 3 * seq_len
|
||
|
|
||
|
for i in range(Z):
|
||
|
kv_cache_loc[i, :] = torch.arange(i * seq_len, (i + 1) * seq_len, dtype=torch.int32, device="cuda")
|
||
|
|
||
|
token_attention_fwd(q, k, v, o, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_kv_cache_len, alibi=alibi)
|
||
|
torch_out = torch_att(q, k, v, Z, seq_len, head_num, head_dim)
|
||
|
|
||
|
print("max ", torch.max(torch.abs(torch_out - o)))
|
||
|
print("mean ", torch.mean(torch.abs(torch_out - o)))
|
||
|
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test()
|