mirror of https://github.com/hpcaitech/ColossalAI
62 lines
2.3 KiB
Python
62 lines
2.3 KiB
Python
|
import os
|
||
|
from packaging import version
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from colossalai.inference.tensor_parallel import MemoryManager
|
||
|
from colossalai.logging import disable_existing_loggers
|
||
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||
|
|
||
|
BATCH_SIZE = 4
|
||
|
INPUT_LEN = 16
|
||
|
OUTPUT_LEN = 8
|
||
|
LAYER_NUM = 4
|
||
|
HEAD_NUM = 32
|
||
|
HEAD_DIM = 128
|
||
|
|
||
|
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.5')
|
||
|
|
||
|
def create_cache_manager(rank, world_size, port, batch_size, input_len, output_len, layer_num, head_num, head_dim):
|
||
|
os.environ['RANK'] = str(rank)
|
||
|
os.environ['LOCAL_RANK'] = str(rank)
|
||
|
os.environ['WORLD_SIZE'] = str(world_size)
|
||
|
os.environ['MASTER_ADDR'] = 'localhost'
|
||
|
os.environ['MASTER_PORT'] = str(port)
|
||
|
disable_existing_loggers()
|
||
|
|
||
|
size = batch_size * (input_len + output_len)
|
||
|
kvcache_manager = MemoryManager(size, torch.float16, head_num // world_size, head_dim, layer_num, rank)
|
||
|
key_buffers = kvcache_manager.key_buffer
|
||
|
value_buffers = kvcache_manager.value_buffer
|
||
|
assert len(key_buffers) == len(value_buffers) == layer_num
|
||
|
assert key_buffers[0].shape == value_buffers[0].shape
|
||
|
# required size exceeds the maximum allocated size
|
||
|
invalid_locs = kvcache_manager.alloc_contiguous(size + 1)
|
||
|
assert invalid_locs is None
|
||
|
# for prefill stage, allocation via alloc and alloc_contiguous should be the same
|
||
|
total_token_prefill = batch_size * input_len
|
||
|
prefill_locs = kvcache_manager.alloc(total_token_prefill)
|
||
|
kvcache_manager.free_all()
|
||
|
prefill_locs_contiguous = kvcache_manager.alloc_contiguous(total_token_prefill)[0]
|
||
|
assert torch.equal(prefill_locs, prefill_locs_contiguous)
|
||
|
assert torch.sum(kvcache_manager.mem_state).item() == size - total_token_prefill
|
||
|
kvcache_manager.alloc_contiguous(batch_size)
|
||
|
assert torch.all(kvcache_manager.mem_state[:total_token_prefill + batch_size] == False)
|
||
|
|
||
|
@pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
|
||
|
@pytest.mark.dist
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_cache_manager_dist():
|
||
|
spawn(create_cache_manager,
|
||
|
4,
|
||
|
batch_size=BATCH_SIZE,
|
||
|
input_len=INPUT_LEN,
|
||
|
output_len=OUTPUT_LEN,
|
||
|
layer_num=LAYER_NUM,
|
||
|
head_num=HEAD_NUM,
|
||
|
head_dim=HEAD_DIM)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_cache_manager_dist()
|