2023-03-28 12:25:36 +00:00
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
|
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
|
|
|
|
|
|
|
from ..base import LM
|
|
|
|
|
|
|
|
|
|
|
|
class GPTLM(LM):
|
|
|
|
"""
|
|
|
|
GPT language model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pretrained (str): Pretrained model name or path.
|
|
|
|
config (GPT2Config): Model config.
|
|
|
|
checkpoint (bool): Enable gradient checkpointing.
|
|
|
|
lora_rank (int): Rank of the LoRa layer.
|
|
|
|
lora_train_bias (str): Bias training strategy for the LoRa layer.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
pretrained: Optional[str] = None,
|
|
|
|
config: Optional[GPT2Config] = None,
|
|
|
|
checkpoint: bool = False,
|
|
|
|
lora_rank: int = 0,
|
|
|
|
lora_train_bias: str = 'none') -> None:
|
|
|
|
if pretrained is not None:
|
|
|
|
model = GPT2LMHeadModel.from_pretrained(pretrained)
|
|
|
|
elif config is not None:
|
|
|
|
model = GPT2LMHeadModel(config)
|
|
|
|
else:
|
|
|
|
model = GPT2LMHeadModel(GPT2Config())
|
|
|
|
if checkpoint:
|
|
|
|
model.gradient_checkpointing_enable()
|
|
|
|
super().__init__(model, lora_rank, lora_train_bias)
|
2023-04-04 01:46:23 +00:00
|
|
|
|
|
|
|
def forward(self, input_ids, attention_mask=None, labels=None, **kwargs):
|
|
|
|
return self.model(input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
|