mirror of https://github.com/hpcaitech/ColossalAI
47 lines
1.5 KiB
Python
47 lines
1.5 KiB
Python
|
import copy
|
||
|
import random
|
||
|
from dataclasses import dataclass, field
|
||
|
from typing import Callable, Dict, Sequence
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
import transformers
|
||
|
from torch.utils.data import Dataset
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from colossalai.logging import get_dist_logger
|
||
|
|
||
|
from .utils import is_rank_0, jload
|
||
|
|
||
|
logger = get_dist_logger()
|
||
|
|
||
|
|
||
|
class PromptDataset(Dataset):
|
||
|
"""Dataset for supervised fine-tuning."""
|
||
|
|
||
|
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, max_datasets_size: int = None):
|
||
|
super(PromptDataset, self).__init__()
|
||
|
self.prompt = []
|
||
|
logger.info("Loading data...")
|
||
|
list_data_dict = jload(data_path)
|
||
|
logger.info(f"Loaded {len(list_data_dict)} examples.")
|
||
|
|
||
|
if max_datasets_size is not None:
|
||
|
logger.info(f"Limiting dataset to {max_datasets_size} examples.")
|
||
|
list_data_dict = list_data_dict[:max_datasets_size]
|
||
|
|
||
|
for data_dict in list_data_dict:
|
||
|
token = tokenizer(data_dict["instruction"],
|
||
|
return_tensors='pt',
|
||
|
max_length=96,
|
||
|
padding='max_length',
|
||
|
truncation=True)
|
||
|
for idx in token['input_ids']:
|
||
|
self.prompt.append(idx.to(torch.cuda.current_device()))
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.prompt)
|
||
|
|
||
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
||
|
return self.prompt[i]
|