mirror of https://github.com/hpcaitech/ColossalAI
40 lines
1.3 KiB
Python
40 lines
1.3 KiB
Python
|
from colossalai.utils.commons import BucketizedTensorCopy
|
||
|
from colossalai.zero.sharded_param import ShardedParamV2
|
||
|
from colossalai.utils import free_port
|
||
|
import torch
|
||
|
import colossalai
|
||
|
|
||
|
|
||
|
def test_bucket_copy():
|
||
|
# init dist env
|
||
|
colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||
|
|
||
|
copyer = BucketizedTensorCopy(20)
|
||
|
|
||
|
shape_list = [(2, 3), (5), (8), (12)]
|
||
|
src_param_list = []
|
||
|
tgt_param_list = []
|
||
|
for shape in shape_list:
|
||
|
# on CPU
|
||
|
src_param = torch.nn.Parameter(torch.randn(shape, dtype=torch.float, device=torch.device('cpu')))
|
||
|
print(src_param)
|
||
|
# on GPU
|
||
|
tgt_param = ShardedParamV2(torch.nn.Parameter(torch.ones(shape, dtype=torch.half, device=torch.device('cuda'))))
|
||
|
|
||
|
src_param_list.append(src_param)
|
||
|
tgt_param_list.append(tgt_param)
|
||
|
|
||
|
copyer.copy(src_param, tgt_param)
|
||
|
|
||
|
copyer.flush()
|
||
|
|
||
|
for src_param, tgt_param in zip(src_param_list, tgt_param_list):
|
||
|
print(tgt_param.data.payload)
|
||
|
diff = src_param.cpu().float() - tgt_param.data.payload.cpu().float()
|
||
|
assert torch.allclose(src_param.cpu().float(), tgt_param.data.payload.cpu().float(), rtol=1e-03,
|
||
|
atol=1e-03), f"diff {diff}"
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_bucket_copy()
|