mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
81 lines
2.8 KiB
81 lines
2.8 KiB
2 years ago
|
from functools import partial
|
||
|
import pytest
|
||
|
import torch
|
||
|
import torch.multiprocessing as mp
|
||
|
|
||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||
|
from colossalai.device.device_mesh import DeviceMesh
|
||
|
from colossalai.initialize import launch
|
||
|
from colossalai.utils import free_port
|
||
|
from colossalai.testing import rerun_if_address_is_in_use
|
||
|
from colossalai.logging import disable_existing_loggers
|
||
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager, CollectiveCommPattern
|
||
|
|
||
|
|
||
|
def check_apply(rank, world_size, port):
|
||
|
disable_existing_loggers()
|
||
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
|
||
|
physical_mesh_id = torch.arange(0, 4)
|
||
|
mesh_shape = (2, 2)
|
||
|
# [[0, 1,
|
||
|
# [2, 3]]
|
||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||
|
entire_shape = torch.Size((4, 2))
|
||
|
shape_consistency_manager = ShapeConsistencyManager()
|
||
|
dim_partition_source = {0: [0]}
|
||
|
dim_partition_target = {1: [0]}
|
||
|
|
||
|
# DistSpec:
|
||
|
# shard_sequence: S0,R
|
||
|
# device_mesh_shape: (2, 2)
|
||
|
sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source)
|
||
|
|
||
|
# DistSpec:
|
||
|
# shard_sequence: R,S0
|
||
|
# device_mesh_shape: (2, 2)
|
||
|
sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target)
|
||
|
|
||
|
if rank in (0, 1):
|
||
|
sharded_tensor_0 = torch.zeros(2, 1)
|
||
|
sharded_tensor_1 = torch.ones(2, 1)
|
||
|
# tensor([[0., 1.],
|
||
|
# [0., 1.]])
|
||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||
|
if rank in (2, 3):
|
||
|
sharded_tensor_0 = torch.ones(2, 1) * 2
|
||
|
sharded_tensor_1 = torch.ones(2, 1) * 3
|
||
|
# tensor([[2., 3.],
|
||
|
# [2., 3.]])
|
||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||
|
|
||
|
if rank in (0, 1):
|
||
|
# tensor([[0.],
|
||
|
# [0.],
|
||
|
# [2.],
|
||
|
# [2.]])
|
||
|
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda()
|
||
|
if rank in (2, 3):
|
||
|
# tensor([[1.],
|
||
|
# [1.],
|
||
|
# [3.],
|
||
|
# [3.]])
|
||
|
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda()
|
||
|
|
||
|
tensor_to_comm.sharding_spec = sharding_spec_source
|
||
|
shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target)
|
||
|
assert tensor_to_comm.equal(tensor_to_check)
|
||
|
assert str(tensor_to_comm.sharding_spec.sharding_sequence) == str(sharding_spec_target.sharding_sequence)
|
||
|
|
||
|
|
||
|
@pytest.mark.dist
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_apply():
|
||
|
world_size = 4
|
||
|
run_func = partial(check_apply, world_size=world_size, port=free_port())
|
||
|
mp.spawn(run_func, nprocs=world_size)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_apply()
|