from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.tensor.sharding_spec import ShardingSpec from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from colossalai.logging import disable_existing_loggers from colossalai.tensor.shape_consistency import ShapeConsistencyManager, CollectiveCommPattern def check_apply(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) entire_shape = torch.Size((4, 2)) shape_consistency_manager = ShapeConsistencyManager() dim_partition_source = {0: [0]} dim_partition_target = {1: [0]} # DistSpec: # shard_sequence: S0,R # device_mesh_shape: (2, 2) sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source) # DistSpec: # shard_sequence: R,S0 # device_mesh_shape: (2, 2) sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target) if rank in (0, 1): sharded_tensor_0 = torch.zeros(2, 1) sharded_tensor_1 = torch.ones(2, 1) # tensor([[0., 1.], # [0., 1.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() if rank in (2, 3): sharded_tensor_0 = torch.ones(2, 1) * 2 sharded_tensor_1 = torch.ones(2, 1) * 3 # tensor([[2., 3.], # [2., 3.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() if rank in (0, 1): # tensor([[0.], # [0.], # [2.], # [2.]]) tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda() if rank in (2, 3): # tensor([[1.], # [1.], # [3.], # [3.]]) tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda() tensor_to_comm.sharding_spec = sharding_spec_source shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target) assert tensor_to_comm.equal(tensor_to_check) assert str(tensor_to_comm.sharding_spec.sharding_sequence) == str(sharding_spec_target.sharding_sequence) @pytest.mark.dist @rerun_if_address_is_in_use() def test_apply(): world_size = 4 run_func = partial(check_apply, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_apply()