|
|
|
import torch
|
|
|
|
import colossalai
|
|
|
|
import pytest
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from colossalai.gemini.memory_tracer import MemStatsCollector
|
|
|
|
from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER
|
|
|
|
from colossalai.utils.memory import colo_set_process_memory_fraction
|
|
|
|
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
|
|
|
|
from colossalai.gemini.stateful_tensor import TensorState
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from typing import List
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
from colossalai.gemini import StatefulTensorMgr
|
|
|
|
from colossalai.gemini.tensor_placement_policy import AutoTensorPlacementPolicy
|
|
|
|
|
|
|
|
|
|
|
|
class Net(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
super().__init__()
|
|
|
|
# each parameter is 128 MB
|
|
|
|
self.p0 = Parameter(torch.empty(1024, 1024, 32))
|
|
|
|
self.p1 = Parameter(torch.empty(1024, 1024, 32))
|
|
|
|
self.p2 = Parameter(torch.empty(1024, 1024, 32))
|
|
|
|
|
|
|
|
|
|
|
|
def limit_cuda_memory(memory_in_g: float):
|
|
|
|
cuda_capacity = torch.cuda.get_device_properties(get_current_device()).total_memory
|
|
|
|
fraction = (memory_in_g * 1024**3) / cuda_capacity
|
|
|
|
colo_set_process_memory_fraction(fraction)
|
|
|
|
|
|
|
|
|
|
|
|
def run_stm():
|
|
|
|
# warmup phase use 20% CUDA memory to store params
|
|
|
|
# only 2 params can be on CUDA
|
|
|
|
limit_cuda_memory(1.26)
|
|
|
|
model = Net()
|
|
|
|
for p in model.parameters():
|
|
|
|
p.colo_attr = ShardedParamV2(p, set_data_none=True)
|
|
|
|
GLOBAL_MODEL_DATA_TRACER.register_model(model)
|
|
|
|
mem_collector = MemStatsCollector()
|
|
|
|
tensor_placement_policy = AutoTensorPlacementPolicy(mem_stats_collector=mem_collector)
|
|
|
|
stateful_tensor_mgr = StatefulTensorMgr(tensor_placement_policy)
|
|
|
|
stateful_tensors = [p.colo_attr.sharded_data_tensor for p in model.parameters()]
|
|
|
|
stateful_tensor_mgr.register_stateful_tensor_list(stateful_tensors)
|
|
|
|
|
|
|
|
mem_collector.start_collection()
|
|
|
|
# Compute order: 0 1 2 0 1
|
|
|
|
# warmup
|
|
|
|
# use naive eviction strategy
|
|
|
|
apply_adjust(model, model.p0, [model.p0], stateful_tensor_mgr)
|
|
|
|
mem_collector.sample_model_data()
|
|
|
|
mem_collector.sample_overall_data()
|
|
|
|
apply_adjust(model, model.p1, [model.p0, model.p1], stateful_tensor_mgr)
|
|
|
|
mem_collector.sample_model_data()
|
|
|
|
mem_collector.sample_overall_data()
|
|
|
|
apply_adjust(model, model.p2, [model.p1, model.p2], stateful_tensor_mgr)
|
|
|
|
mem_collector.sample_model_data()
|
|
|
|
mem_collector.sample_overall_data()
|
|
|
|
apply_adjust(model, model.p0, [model.p0, model.p2], stateful_tensor_mgr)
|
|
|
|
mem_collector.sample_model_data()
|
|
|
|
mem_collector.sample_overall_data()
|
|
|
|
apply_adjust(model, model.p1, [model.p1, model.p2], stateful_tensor_mgr)
|
|
|
|
mem_collector.sample_model_data()
|
|
|
|
mem_collector.finish_collection()
|
|
|
|
stateful_tensor_mgr.finish_iter()
|
|
|
|
|
|
|
|
# warmup done
|
|
|
|
# only 2 params can be on CUDA
|
|
|
|
limit_cuda_memory(0.26 / tensor_placement_policy._steady_cuda_cap_ratio)
|
|
|
|
# use OPT-like eviction strategy
|
|
|
|
apply_adjust(model, model.p0, [model.p0, model.p1], stateful_tensor_mgr)
|
|
|
|
apply_adjust(model, model.p1, [model.p0, model.p1], stateful_tensor_mgr)
|
|
|
|
apply_adjust(model, model.p2, [model.p0, model.p2], stateful_tensor_mgr)
|
|
|
|
apply_adjust(model, model.p0, [model.p0, model.p2], stateful_tensor_mgr)
|
|
|
|
apply_adjust(model, model.p1, [model.p1, model.p2], stateful_tensor_mgr)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_adjust(model: torch.nn.Module, compute_param: Parameter, cuda_param_after_adjust: List[Parameter],
|
|
|
|
stateful_tensor_mgr: StatefulTensorMgr):
|
|
|
|
compute_param.colo_attr._sharded_data_tensor.trans_state(TensorState.COMPUTE)
|
|
|
|
for p in model.parameters():
|
|
|
|
if p is not compute_param and p.colo_attr._sharded_data_tensor.state != TensorState.HOLD:
|
|
|
|
p.colo_attr._sharded_data_tensor.trans_state(TensorState.HOLD)
|
|
|
|
stateful_tensor_mgr.adjust_layout()
|
|
|
|
print_stats(model)
|
|
|
|
device = torch.device(torch.cuda.current_device())
|
|
|
|
cuda_param_after_adjust = [hash(p) for p in cuda_param_after_adjust]
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
if hash(p) in cuda_param_after_adjust:
|
|
|
|
assert p.colo_attr._sharded_data_tensor.device == device, f'{n} {p.colo_attr._sharded_data_tensor.device} vs {device}'
|
|
|
|
else:
|
|
|
|
assert p.colo_attr._sharded_data_tensor.device == torch.device('cpu')
|
|
|
|
|
|
|
|
|
|
|
|
def print_stats(model: torch.nn.Module):
|
|
|
|
msgs = []
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
msgs.append(f'{n}: {p.colo_attr._sharded_data_tensor.state}({p.colo_attr._sharded_data_tensor.device})')
|
|
|
|
print(f'[ {", ".join(msgs)} ]')
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
run_stm()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_stateful_tensor_manager(world_size=1):
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# this unit test can pass if available CUDA memory >= 1.5G
|
|
|
|
test_stateful_tensor_manager()
|