ColossalAI/docs/source/zh-Hans/features/2D_tensor_parallel.md

142 lines
5.4 KiB
Markdown
Raw Normal View History

# 2D 张量并行
作者: Zhengda Bian, Yongbin Li
**前置教程**
- [定义配置文件](../basics/define_your_config.md)
- [并行配置](../basics/configure_parallelization.md)
- [1D 张量并行](./1D_tensor_parallel.md)
**示例代码**
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
**相关论文**
- [An Efficient 2D Method for Training Super-Large Deep Learning Models](https://arxiv.org/pdf/2104.05343.pdf)
## 引言
1D张量并行没有对 activations 进行划分,就大规模模型而言,这也会消耗大量的内存。
为了平均分配计算和内存负荷,在 SUMMA可扩展的通用矩阵乘法算法的基础上 [2D张量并行](https://arxiv.org/pdf/2104.05343.pdf) 被引入。
我们还是以线性层 $Y = XA$ 为例。
给定 $P=q\times q$ 个处理器(必要条件), 如 $q=2$, 我们把输入 $X$ 和权重A $A$ 都划分为
$$
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right]
\text{~and~}
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
$$
该计算包括 $q$ 步。 当 $t=1$ 时, $X_{i0}$ 在其行中被广播, 而 $A_{0j}$ 在其列中被广播。因此,我们有
$$
\left[\begin{matrix} X_{00},A_{00} & X_{00},A_{01} \\ X_{10},A_{00} & X_{10},A_{01} \end{matrix} \right].
$$
然后我们在每个处理器 $(i, j)$ 上将 $X_{i0}$ 和 $A_{0j}$ 相乘为
$$
\left[\begin{matrix} X_{00}A_{00} & X_{00}A_{01} \\ X_{10}A_{00} & X_{10}A_{01} \end{matrix} \right] (1).
$$
同样,当 $t=2$ 时, $X_{i1}$ 在其行中被广播, $A_{1j}$ 在其列中被广播, 我们将它们相乘为
$$
\left[\begin{matrix} X_{01}A_{10} & X_{01}A_{11} \\ X_{11}A_{10} & X_{11}A_{11} \end{matrix} \right] (2).
$$
通过将 $(1)$ 和 $(2)$ 相加,我们有
$$
Y = XA = \left[\begin{matrix} X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \\ X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right].
$$
## 效率
给定 $P=q\times q$ 个处理器, 我们展现理论上的计算和内存成本以及基于环形算法的2D张量并行的前向和后向的通信成本。
| 计算 | 内存 (参数) | 内存 (activations) | 通信 (带宽) | 通信 (时延) |
| :-: | :-: | :-: | :-: | :-: |
| $O(1/q^2)$ | $O(1/q^2)$ | $O(1/q^2)$ | $O(6(q-1)/q)$ | $O(6(q-1))$ |
## 使用
为了使我们的模型能够实现二维张量并行例如在4个 GPU 上,我们需要配置如下的并行设置。
```python
CONFIG = dict(parallel=dict(
data=1,
pipeline=1,
tensor=dict(size=4, mode='2d'),
))
```
然后 Colossal-AI 会自动对所有来自 `colossalai.nn` 的层应用2D张量并行。
让我们定义一个由两层多层感知器 (MLP) 组成的模型,如下所示。
```python
import colossalai
import colossalai.nn as col_nn
import torch
from colossalai.utils import print_rank_0
class MLP(torch.nn.Module):
def __init__(self, dim: int = 256):
super().__init__()
intermediate_dim = dim * 4
self.dense_1 = col_nn.Linear(dim, intermediate_dim)
print_rank_0(f'Weight of the first linear layer: {self.dense_1.weight.shape}')
self.activation = torch.nn.GELU()
self.dense_2 = col_nn.Linear(intermediate_dim, dim)
print_rank_0(f'Weight of the second linear layer: {self.dense_2.weight.shape}')
self.dropout = col_nn.Dropout(0.1)
def forward(self, x):
x = self.dense_1(x)
print_rank_0(f'Output of the first linear layer: {x.shape}')
x = self.activation(x)
x = self.dense_2(x)
print_rank_0(f'Output of the second linear layer: {x.shape}')
x = self.dropout(x)
return x
```
在4个 GPU 上启动 Colossal-AI 并建立模型。
```python
parser = colossalai.get_default_parser()
colossalai.launch(config=CONFIG,
rank=args.rank,
world_size=args.world_size,
local_rank=args.local_rank,
host=args.host,
port=args.port)
m = MLP()
```
我们将会看到 MLP 模型中被划分的参数(如权重)的形状。
```shell
Weight of the first linear layer: torch.Size([128, 512])
Weight of the second linear layer: torch.Size([512, 128])
```
第一个线性层的完整权重形状应该为 `[256, 1024]`. 经过2D并行划分后它在每个 GPU 上变成了 `[128, 512]`
同样地,第二层将权重 `[1024, 256]` 划分为 `[512, 128]`.
我们可以用一些随机输入来运行这个模型。
```python
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import get_current_device
x = torch.randn((16, 256), device=get_current_device())
# partition input
torch.distributed.broadcast(x, src=0)
x = torch.chunk(x, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)]
x = torch.chunk(x, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)]
print_rank_0(f'Input: {x.shape}')
x = m(x)
```
然后我们可以看到 activation 结果的形状。
```shell
Input: torch.Size([8, 128])
Output of the first linear layer: torch.Size([8, 512])
Output of the second linear layer: torch.Size([8, 128])
```
2D并行中的 activation 张量都是同时在行和列分割的。例如,第一个线性层的输出是 `[8, 512]`, 而第二层的输出为 `[8, 128]`