mirror of https://github.com/hpcaitech/ColossalAI
[doc] update hybrid parallelism doc (#3770)
parent
15024e40d9
commit
48bd056761
|
@ -7,7 +7,7 @@ Author: Zhengda Bian, Yongbin Li
|
|||
- [Configure Parallelization](../basics/configure_parallelization.md)
|
||||
|
||||
**Example Code**
|
||||
- [ColossalAI-Examples 1D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_1d.py)
|
||||
- [ColossalAI-Examples 1D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**Related Paper**
|
||||
- [Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://deepakn94.github.io/assets/papers/megatron-sc21.pdf)
|
||||
|
@ -19,15 +19,15 @@ An efficient 1D tensor parallelism implementation was introduced by [Megatron-LM
|
|||
|
||||
Let's take a linear layer as an example, which consists of a GEMM $Y = XA$. Given 2 processors, we split the columns of $A$ into $[A_1 ~ A_2]$, and calculate $Y_i = XA_i$ on each processor, which then forms $[Y_1 ~ Y_2] = [XA_1 ~ XA_2]$. This is called a column-parallel fashion.
|
||||
|
||||
When a second linear layer $Z=YB$ follows the column-parallel one, we split $B$ into
|
||||
```math
|
||||
When a second linear layer $Z=YB$ follows the column-parallel one, we split $B$ into
|
||||
$$
|
||||
\left[\begin{matrix} B_1 \\ B_2 \end{matrix} \right]
|
||||
```
|
||||
$$
|
||||
which is called a row-parallel fashion.
|
||||
To calculate
|
||||
```math
|
||||
To calculate
|
||||
$$
|
||||
Z = [Y_1 ~ Y_2] \left[\begin{matrix} B_1 \\ B_2 \end{matrix} \right]
|
||||
```
|
||||
$$
|
||||
we first calculate $Y_iB_i$ on each processor, then use an all-reduce to aggregate the results as $Z=Y_1B_1+Y_2B_2$.
|
||||
|
||||
We also need to note that in the backward pass, the column-parallel linear layer needs to aggregate the gradients of the input tensor $X$, because on each processor $i$ we only have $\dot{X_i}=\dot{Y_i}A_i^T$.
|
||||
|
|
|
@ -8,7 +8,7 @@ Author: Zhengda Bian, Yongbin Li
|
|||
- [1D Tensor Parallelism](./1D_tensor_parallel.md)
|
||||
|
||||
**Example Code**
|
||||
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2d.py)
|
||||
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**Related Paper**
|
||||
- [An Efficient 2D Method for Training Super-Large Deep Learning Models](https://arxiv.org/pdf/2104.05343.pdf)
|
||||
|
@ -22,33 +22,33 @@ Let's still take a linear layer $Y = XA$ as an example.
|
|||
Given $P=q\times q$ processors (necessary condition), e.g. $q=2$, we split both the input $X$ and weight $A$ into
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right]
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right]
|
||||
\text{~and~}
|
||||
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right].
|
||||
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
The calculation includes $q$ steps. When $t=1$, $X_{i0}$ is broadcasted in its row, and $A_{0j}$ is broadcasted in its column. So, we have
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10},A_{00} & X_{10},A_{01} \\ X_{00},A_{00} & X_{00},A_{01} \end{matrix} \right].
|
||||
\left[\begin{matrix} X_{00},A_{00} & X_{00},A_{01} \\ X_{10},A_{00} & X_{10},A_{01} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
Then we multiply $X_{i0}$ and $A_{0j}$ on each processor $(i, j)$ as
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10}A_{00} & X_{10}A_{01} \\ X_{00}A_{00} & X_{00}A_{01} \end{matrix} \right] (1).
|
||||
\left[\begin{matrix} X_{00}A_{00} & X_{00}A_{01} \\ X_{10}A_{00} & X_{10}A_{01} \end{matrix} \right] (1).
|
||||
$$
|
||||
|
||||
Similarly, when $t=2$, $X_{i1}$ is broadcasted in its row, $A_{1j}$ is broadcasted in its column, and we multiply them as
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{11}A_{10} & X_{11}A_{11} \\ X_{01}A_{10} & X_{01}A_{11} \end{matrix} \right] (2).
|
||||
\left[\begin{matrix} X_{01}A_{10} & X_{01}A_{11} \\ X_{11}A_{10} & X_{11}A_{11} \end{matrix} \right] (2).
|
||||
$$
|
||||
|
||||
By adding $(1)$ and $(2)$ up, we have
|
||||
|
||||
$$
|
||||
Y = XA = \left[\begin{matrix} X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \\ X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right].
|
||||
Y = XA = \left[\begin{matrix} X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \\ X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
## Efficiency
|
||||
|
|
|
@ -9,7 +9,7 @@ Author: Zhengda Bian, Yongbin Li
|
|||
- [2D Tensor Parallelism](./2D_tensor_parallel.md)
|
||||
|
||||
**Example Code**
|
||||
- [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2p5d.py)
|
||||
- [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**Related Paper**
|
||||
- [2.5-dimensional distributed model training](https://arxiv.org/pdf/2105.14500.pdf)
|
||||
|
@ -23,29 +23,30 @@ Let's still take a linear layer $Y = XA$ as an example.
|
|||
Given $P=q \times q \times d$ processors (necessary condition), e.g. $q=d=2$, we split the input $X$ into $d\times q$ rows and $q$ columns as
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \\ X_{10} & X_{11} \\ X_{00} & X_{01}\end{matrix} \right],
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \\ X_{20} & X_{21} \\ X_{30} & X_{31}\end{matrix} \right],
|
||||
$$
|
||||
|
||||
which can be reshaped into $d$ layers as
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \end{matrix} \right].
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{20} & X_{21} \\ X_{30} & X_{31} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
Also, the weight $A$ is split into
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right].
|
||||
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
For each layer of $X$, we use the SUMMA algorithm to multiply $X$ and $A$.
|
||||
Then, we have the output
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \\ Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right]
|
||||
\left[\begin{matrix} Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \\ Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right]
|
||||
\text{~and~}
|
||||
$$
|
||||
$$
|
||||
\left[\begin{matrix} Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \\ Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \end{matrix} \right].
|
||||
\left[\begin{matrix} Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \\ Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
## Efficiency
|
||||
|
|
|
@ -9,7 +9,7 @@ Author: Zhengda Bian, Yongbin Li
|
|||
- [2D Tensor Parallelism](./2D_tensor_parallel.md)
|
||||
|
||||
**Example Code**
|
||||
- [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_3d.py)
|
||||
- [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**Related Paper**
|
||||
- [Maximizing Parallelism in Distributed Training for Huge Neural Networks](https://arxiv.org/pdf/2105.14450.pdf)
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
- [并行配置](../basics/configure_parallelization.md)
|
||||
|
||||
**示例代码**
|
||||
- [ColossalAI-Examples 1D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_1d.py)
|
||||
- [ColossalAI-Examples 1D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**相关论文**
|
||||
- [Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://deepakn94.github.io/assets/papers/megatron-sc21.pdf)
|
||||
|
@ -20,15 +20,16 @@
|
|||
让我们以一个线性层为例,它包括一个 GEMM $Y = XA$。 给定2个处理器,我们把列 $A$ 划分为 $[A_1 ~ A_2]$, 并在每个处理器上计算 $Y_i = XA_i$ , 然后形成 $[Y_1 ~ Y_2] = [XA_1 ~ XA_2]$. 这被称为列并行方式。
|
||||
|
||||
当第二个线性层 $Z=YB$ 跟随上述列并行层的时候, 我们把 $B$ 划分为
|
||||
```math
|
||||
$$
|
||||
\left[\begin{matrix} B_1 \\ B_2 \end{matrix} \right]
|
||||
```
|
||||
这就是所谓的行并行方式.
|
||||
$$
|
||||
|
||||
为了计算
|
||||
```math
|
||||
$$
|
||||
Z = [Y_1 ~ Y_2] \left[\begin{matrix} B_1 \\ B_2 \end{matrix} \right]
|
||||
```
|
||||
$$
|
||||
我们首先在每个处理器上计算 $Y_iB_i$ 然后使用一个all-reduce操作将结果汇总为 $Z=Y_1B_1+Y_2B_2$。
|
||||
|
||||
我们还需要注意,在后向计算中,列并行线性层需要聚合输入张量 $X$, 因为在每个处理器 $i$ 上,我们只有 $\dot{X_i}=\dot{Y_i}A_i^T$,因此,我们在各处理器之间进行all-reduce,得到 $\dot{X}=\dot{Y}A^T=\dot{Y_1}A_1^T+\dot{Y_2}A_2^T$。
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
- [1D 张量并行](./1D_tensor_parallel.md)
|
||||
|
||||
**示例代码**
|
||||
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2d.py)
|
||||
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**相关论文**
|
||||
- [An Efficient 2D Method for Training Super-Large Deep Learning Models](https://arxiv.org/pdf/2104.05343.pdf)
|
||||
|
@ -22,33 +22,33 @@
|
|||
给定 $P=q\times q$ 个处理器(必要条件), 如 $q=2$, 我们把输入 $X$ 和权重A $A$ 都划分为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right]
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right]
|
||||
\text{~and~}
|
||||
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right]。
|
||||
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
该计算包括 $q$ 步。 当 $t=1$ 时, $X_{i0}$ 在其行中被广播, 而 $A_{0j}$ 在其列中被广播。因此,我们有
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10},A_{00} & X_{10},A_{01} \\ X_{00},A_{00} & X_{00},A_{01} \end{matrix} \right]。
|
||||
\left[\begin{matrix} X_{00},A_{00} & X_{00},A_{01} \\ X_{10},A_{00} & X_{10},A_{01} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
然后我们在每个处理器 $(i, j)$ 上将 $X_{i0}$ 和 $A_{0j}$ 相乘为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10}A_{00} & X_{10}A_{01} \\ X_{00}A_{00} & X_{00}A_{01} \end{matrix} \right] (1)。
|
||||
\left[\begin{matrix} X_{00}A_{00} & X_{00}A_{01} \\ X_{10}A_{00} & X_{10}A_{01} \end{matrix} \right] (1).
|
||||
$$
|
||||
|
||||
同样,当 $t=2$ 时, $X_{i1}$ 在其行中被广播, $A_{1j}$ 在其列中被广播, 我们将它们相乘为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{11}A_{10} & X_{11}A_{11} \\ X_{01}A_{10} & X_{01}A_{11} \end{matrix} \right] (2)。
|
||||
\left[\begin{matrix} X_{01}A_{10} & X_{01}A_{11} \\ X_{11}A_{10} & X_{11}A_{11} \end{matrix} \right] (2).
|
||||
$$
|
||||
|
||||
通过将 $(1)$ 和 $(2)$ 相加,我们有
|
||||
|
||||
$$
|
||||
Y = XA = \left[\begin{matrix} X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \\ X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right]。
|
||||
Y = XA = \left[\begin{matrix} X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \\ X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
## 效率
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
- [2D 张量并行](./2D_tensor_parallel.md)
|
||||
|
||||
**示例代码**
|
||||
- [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2p5d.py)
|
||||
- [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**相关论文**
|
||||
- [2.5-dimensional distributed model training](https://arxiv.org/pdf/2105.14500.pdf)
|
||||
|
@ -22,29 +22,29 @@
|
|||
给定 $P=q \times q \times d$ 个处理器(必要条件), 如 $q=d=2$, 我们把输入 $X$ 划分为 $d\times q$ 行和 $q$ 列
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \\ X_{10} & X_{11} \\ X_{00} & X_{01}\end{matrix} \right],
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \\ X_{20} & X_{21} \\ X_{30} & X_{31}\end{matrix} \right],
|
||||
$$
|
||||
它可以被重塑为 $d$ 层
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \end{matrix} \right].
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{20} & X_{21} \\ X_{30} & X_{31} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
另外,权重 $A$ 被分割为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right].
|
||||
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
对于 $X$ 相关的每一层, 我们使用SUMMA算法将 $X$ 与 $A$ 相乘。
|
||||
然后,我们得到输出
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \\ Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right]
|
||||
\left[\begin{matrix} Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \\ Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right]
|
||||
\text{~and~}
|
||||
$$
|
||||
$$
|
||||
\left[\begin{matrix} Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \\ Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \end{matrix} \right].
|
||||
\left[\begin{matrix} Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \\ Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
## 效率
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
- [2D 张量并行](./2D_tensor_parallel.md)
|
||||
|
||||
**示例代码**
|
||||
- [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_3d.py)
|
||||
- [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**相关论文**
|
||||
- [Maximizing Parallelism in Distributed Training for Huge Neural Networks](https://arxiv.org/pdf/2105.14450.pdf)
|
||||
|
|
Loading…
Reference in New Issue