ColossalAI/tests/test_infer/test_llama_infer.py

85 lines
3.0 KiB
Python
Raw Normal View History

[Feature] The first PR to Add TP inference engine, kv-cache manager and related kernels for our inference system (#4577) * [infer] Infer/llama demo (#4503) * add * add infer example * finish * finish * stash * fix * [Kernels] add inference token attention kernel (#4505) * add token forward * fix tests * fix comments * add try import triton * add adapted license * add tests check * [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager (#4485) * added _vllm_rms_norm * change place * added tests * added tests * modify * adding kernels * added tests: * adding kernels * modify * added * updating kernels * adding tests * added tests * kernel change * submit * modify * added * edit comments * change name * change commnets and fix import * add * added * combine codes (#4509) * [feature] add KV cache manager for llama & bloom inference (#4495) * add kv cache memory manager * add stateinfo during inference * format * format * rename file * add kv cache test * revise on BatchInferState * file dir change * [Bug FIx] import llama context ops fix (#4524) * added _vllm_rms_norm * change place * added tests * added tests * modify * adding kernels * added tests: * adding kernels * modify * added * updating kernels * adding tests * added tests * kernel change * submit * modify * added * edit comments * change name * change commnets and fix import * add * added * fix * add ops into init.py * add * [Infer] Add TPInferEngine and fix file path (#4532) * add engine for TP inference * move file path * update path * fix TPInferEngine * remove unused file * add engine test demo * revise TPInferEngine * fix TPInferEngine, add test * fix * Add Inference test for llama (#4508) * add kv cache memory manager * add stateinfo during inference * add * add infer example * finish * finish * format * format * rename file * add kv cache test * revise on BatchInferState * add inference test for llama * fix conflict * feature: add some new features for llama engine * adapt colossalai triton interface * Change the parent class of llama policy * add nvtx * move llama inference code to tensor_parallel * fix __init__.py * rm tensor_parallel * fix: fix bugs in auto_policy.py * fix:rm some unused codes * mv colossalai/tpinference to colossalai/inference/tensor_parallel * change __init__.py * save change * fix engine * Bug fix: Fix hang * remove llama_infer_engine.py --------- Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [infer] Add Bloom inference policy and replaced methods (#4512) * add bloom inference methods and policy * enable pass BatchInferState from model forward * revise bloom infer layers/policies * add engine for inference (draft) * add test for bloom infer * fix bloom infer policy and flow * revise bloom test * fix bloom file path * remove unused codes * fix bloom modeling * fix dir typo * fix trivial * fix policy * clean pr * trivial fix * Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552) This reverts commit 17cfa5714083a81a505c097f1c411cd28162d922. * [Doc] Add colossal inference doc (#4549) * create readme * add readme.md * fix typos * [infer] Add Bloom inference policy and replaced methods (#4553) * add bloom inference methods and policy * enable pass BatchInferState from model forward * revise bloom infer layers/policies * add engine for inference (draft) * add test for bloom infer * fix bloom infer policy and flow * revise bloom test * fix bloom file path * remove unused codes * fix bloom modeling * fix dir typo * fix trivial * fix policy * clean pr * trivial fix * trivial * Fix Bugs In Llama Model Forward (#4550) * add kv cache memory manager * add stateinfo during inference * add * add infer example * finish * finish * format * format * rename file * add kv cache test * revise on BatchInferState * add inference test for llama * fix conflict * feature: add some new features for llama engine * adapt colossalai triton interface * Change the parent class of llama policy * add nvtx * move llama inference code to tensor_parallel * fix __init__.py * rm tensor_parallel * fix: fix bugs in auto_policy.py * fix:rm some unused codes * mv colossalai/tpinference to colossalai/inference/tensor_parallel * change __init__.py * save change * fix engine * Bug fix: Fix hang * remove llama_infer_engine.py * bug fix: fix bugs about infer_state.is_context_stage * remove pollcies * fix: delete unused code * fix: delete unused code * remove unused coda * fix conflict --------- Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [doc] add colossal inference fig (#4554) * create readme * add readme.md * fix typos * upload fig * [NFC] fix docstring for colossal inference (#4555) Fix docstring and comments in kv cache manager and bloom modeling * fix docstring in llama modeling (#4557) * [Infer] check import vllm (#4559) * change import vllm * import apply_rotary_pos_emb * change import location * [DOC] add installation req (#4561) * add installation req * fix * slight change * remove empty * [Feature] rms-norm transfer into inference llama.py (#4563) * add installation req * fix * slight change * remove empty * add rmsnorm polciy * add * clean codes * [infer] Fix tp inference engine (#4564) * fix engine prepare data * add engine test * use bloom for testing * revise on test * revise on test * reset shardformer llama (#4569) * [infer] Fix engine - tensors on different devices (#4570) * fix diff device in engine * [codefactor] Feature/colossal inference (#4579) * code factors * remove * change coding (#4581) * [doc] complete README of colossal inference (#4585) * complete fig * Update README.md * [doc]update readme (#4586) * update readme * Update README.md * bug fix: fix bus in llama and bloom (#4588) * [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward (#4592) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * [Kernel]Rmsnorm fix (#4598) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * add triton rmsnorm * delete vllm kernel flag * [Bug Fix]Fix bugs in llama (#4601) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * bug fix: remove rotary_positions_ids --------- Co-authored-by: cuiqing.li <lixx3527@gmail.com> * [kernel] Add triton layer norm & replace norm for bloom (#4609) * add layernorm for inference * add test for layernorm kernel * add bloom layernorm replacement policy * trivial: path * [Infer] Bug fix rotary embedding in llama (#4608) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * [bench] Add bloom inference benchmark (#4621) * add bloom benchmark * readme - update benchmark res * trivial - uncomment for testing (#4622) * [Infer] add check triton and cuda version for tests (#4627) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * add check triton and cuda * Update sharder.py (#4629) * [Inference] Hot fix some bugs and typos (#4632) * fix * fix test * fix conflicts * [typo]Comments fix (#4633) * fallback * fix commnets * bug fix: fix some bugs in test_llama and test_bloom (#4635) * [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * add check triton and cuda * delete benchmark and fix infer bugs * delete benchmark for tests * delete useless code * delete bechmark function in utils * [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642) * [Fix] revise TPInferEngine methods and inference tests * fix llama/bloom infer benchmarks * fix infer tests * trivial fix: benchmakrs * trivial * trivial: rm print * modify utils filename for infer ops test (#4657) * [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670) * fix engine funcs * TPInferEngine: receive shard config in init * benchmarks: revise TPInferEngine init * benchmarks: remove pytest decorator * trivial fix * use small model for tests * [NFC] use args for infer benchmarks (#4674) * revise infer default (#4683) * [Fix] optimize/shard model in TPInferEngine init (#4684) * remove using orig model in engine * revise inference tests * trivial: rename --------- Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com> Co-authored-by: Xu Kai <xukai16@foxmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
2023-09-11 17:22:56 +00:00
import os
import warnings
import pytest
import torch
from packaging import version
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
TPSIZE = 2
BATCH_SIZE = 8
MAX_INPUT_LEN = 12
MAX_OUTPUT_LEN = 100
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.5')
def init_to_get_rotary(self, base=10000):
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
if not hasattr(self.config, "rope_scaling"):
rope_scaling_factor = 1.0
else:
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
if hasattr(self.config, "max_sequence_length"):
max_seq_len = self.config.max_sequence_length
elif hasattr(self.config, "max_position_embeddings"):
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
else:
max_seq_len = 2048 * rope_scaling_factor
base = float(base)
inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) /
self.config.head_dim_))
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
freqs = torch.outer(t, inv_freq)
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
return
@parameterize('test_config', [{
'tp_size': TPSIZE,
}])
def run_llama_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama_for_casual_lm')
for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items():
orig_model = model_fn()
init_to_get_rotary(orig_model.model, base=10000)
orig_model = orig_model.half()
data = data_gen_fn()
shard_config = ShardConfig(enable_tensor_parallelism=True if test_config['tp_size'] > 1 else False,
inference_only=True)
infer_engine = TPInferEngine(orig_model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
generate_kwargs = dict(do_sample=False)
outputs = infer_engine.generate(data, **generate_kwargs)
assert outputs is not None
def check_llama(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_llama_test()
@pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama():
spawn(check_llama, TPSIZE)
if __name__ == "__main__":
test_llama()