mirror of https://github.com/hpcaitech/ColossalAI
154 lines
6.0 KiB
Python
154 lines
6.0 KiB
Python
![]() |
from functools import partial
|
||
|
from types import MethodType
|
||
|
from typing import Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch import Tensor
|
||
|
from torch.nn import CrossEntropyLoss, Module
|
||
|
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
||
|
from transformers.models.bloom.modeling_bloom import BloomModel
|
||
|
from transformers.utils import logging
|
||
|
|
||
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||
|
|
||
|
from .base import Policy
|
||
|
|
||
|
|
||
|
def bloom_model_forward(
|
||
|
self: BloomModel,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
**deprecated_arguments,
|
||
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
||
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||
|
warnings.warn(
|
||
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||
|
" passing `position_ids`.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if len(deprecated_arguments) > 0:
|
||
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||
|
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (output_hidden_states
|
||
|
if output_hidden_states is not None else self.config.output_hidden_states)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
batch_size, seq_length = input_ids.shape
|
||
|
elif inputs_embeds is not None:
|
||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
if past_key_values is None:
|
||
|
past_key_values = tuple([None] * len(self.h))
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape batch_size x num_heads x N x N
|
||
|
# head_mask has shape n_layer x batch x num_heads x N x N
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
|
||
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||
|
|
||
|
presents = () if use_cache else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||
|
use_cache = False
|
||
|
|
||
|
# Compute alibi tensor: check build_alibi_tensor documentation
|
||
|
seq_length_with_past = seq_length
|
||
|
past_key_values_length = 0
|
||
|
if past_key_values[0] is not None:
|
||
|
past_key_values_length = past_key_values[0][0].shape[2]
|
||
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||
|
else:
|
||
|
attention_mask = attention_mask.to(hidden_states.device)
|
||
|
|
||
|
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
||
|
|
||
|
causal_mask = self._prepare_attn_mask(
|
||
|
attention_mask,
|
||
|
input_shape=(batch_size, seq_length),
|
||
|
past_key_values_length=past_key_values_length,
|
||
|
)
|
||
|
|
||
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
|
||
|
def create_custom_forward(module):
|
||
|
|
||
|
def custom_forward(*inputs):
|
||
|
# None for past_key_value
|
||
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
outputs = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(block),
|
||
|
hidden_states,
|
||
|
alibi,
|
||
|
causal_mask,
|
||
|
layer_past,
|
||
|
head_mask[i],
|
||
|
)
|
||
|
else:
|
||
|
outputs = block(
|
||
|
hidden_states,
|
||
|
layer_past=layer_past,
|
||
|
attention_mask=causal_mask,
|
||
|
head_mask=head_mask[i],
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
alibi=alibi,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
if use_cache is True:
|
||
|
presents = presents + (outputs[1],)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||
|
|
||
|
# Add last hidden state
|
||
|
hidden_states = self.ln_f(hidden_states)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
|
||
|
return BaseModelOutputWithPastAndCrossAttentions(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=presents,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|