ColossalAI/applications/Chat/coati/experience_maker/base.py

78 lines
2.4 KiB
Python
Raw Normal View History

2023-03-28 12:25:36 +00:00
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from coati.models.base import Actor
@dataclass
class Experience:
"""Experience is a batch of data.
These data should have the the sequence length and number of actions.
Left padding for sequences is applied.
Shapes of each tensor:
sequences: (B, S)
action_log_probs: (B, A)
values: (B)
reward: (B)
advatanges: (B)
attention_mask: (B, S)
action_mask: (B, A)
"A" is the number of actions.
"""
sequences: torch.Tensor
action_log_probs: torch.Tensor
values: torch.Tensor
reward: torch.Tensor
advantages: torch.Tensor
attention_mask: Optional[torch.LongTensor]
action_mask: Optional[torch.BoolTensor]
@torch.no_grad()
def to_device(self, device: torch.device) -> None:
self.sequences = self.sequences.to(device)
self.action_log_probs = self.action_log_probs.to(device)
self.values = self.values.to(device)
self.reward = self.reward.to(device)
self.advantages = self.advantages.to(device)
if self.attention_mask is not None:
self.attention_mask = self.attention_mask.to(device)
if self.action_mask is not None:
self.action_mask = self.action_mask.to(device)
def pin_memory(self):
self.sequences = self.sequences.pin_memory()
self.action_log_probs = self.action_log_probs.pin_memory()
self.values = self.values.pin_memory()
self.reward = self.reward.pin_memory()
self.advantages = self.advantages.pin_memory()
if self.attention_mask is not None:
self.attention_mask = self.attention_mask.pin_memory()
if self.action_mask is not None:
self.action_mask = self.action_mask.pin_memory()
return self
class ExperienceMaker(ABC):
def __init__(self,
actor: Actor,
critic: nn.Module,
reward_model: nn.Module,
initial_model: Actor,
kl_coef: float = 0.1) -> None:
super().__init__()
self.actor = actor
self.critic = critic
self.reward_model = reward_model
self.initial_model = initial_model
self.kl_coef = kl_coef
@abstractmethod
def make_experience(self, input_ids: torch.Tensor, **generate_kwargs) -> Experience:
pass