ColossalAI/colossalai/nn/optimizer/zero_optimizer.py

316 lines
13 KiB
Python
Raw Normal View History

import math
import warnings
from enum import Enum
from typing import Any, Dict, Set, Tuple
import torch
import torch.distributed as dist
from torch.nn import Parameter
from torch.optim import Optimizer
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
from colossalai.gemini.chunk import Chunk, ChunkManager
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import ColossalaiOptimizer, CPUAdam, FusedAdam, HybridAdam
from colossalai.nn.parallel.data_parallel import ZeroDDP
from colossalai.utils import disposable, get_current_device, is_ddp_ignored
_AVAIL_OPTIM_LIST = {FusedAdam, CPUAdam, HybridAdam}
class OptimState(Enum):
SCALED = 0
UNSCALED = 1
class ZeroOptimizer(ColossalaiOptimizer):
"""A wrapper for optimizer. ``ZeroDDP`` and ``ZeroOptimizer`` implement Zero Redundancy Optimizer (ZeRO state-3).
Note:
You must use ``ZeroDDP`` with ``ZeroOptimizer``.
Note:
Make sure you set ``placement_policy`` of ``GeminiManager`` to `"auto"`,
if you set ``gpu_margin_mem_ratio > 0``.
Args:
optim (Optimizer): An Optimizer instance.
module (ZeroDDP): A ``ZeroDDP`` instance.
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward)
which will be used when using hybrid CPU optimizer.
This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto".
Defaults to 0.0.
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32.
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2.
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5.
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000.
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2.
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32.
"""
def __init__(self,
optim: Optimizer,
module: ZeroDDP,
gpu_margin_mem_ratio: float = 0.0,
initial_scale: float = 2**32,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
clipping_norm: float = 0.0,
norm_type: float = 2.0,
**defaults: Any):
super().__init__(optim)
assert isinstance(module, ZeroDDP)
assert type(optim) in _AVAIL_OPTIM_LIST, "you should use the optimizer in the available list"
self.module = module
self.gemini_manager = module.gemini_manager
self.chunk_manager: ChunkManager = self.gemini_manager.chunk_manager
self.optim_state = OptimState.UNSCALED
self.param_to_range: Dict[Parameter, Tuple[int, int]] = dict()
self.param_to_chunk32: Dict[Parameter, Chunk] = dict()
self.chunk16_set: Set[Chunk] = set()
self.clipping_flag = clipping_norm > 0.0
self.max_norm = clipping_norm
if self.clipping_flag:
assert norm_type == 2.0, "ZeroOptimizer only supports L2 norm now"
ddp_param_list = []
for name, param in module.named_parameters():
if is_ddp_ignored(param):
if param.requires_grad:
warnings.warn(f"Parameter `{name}` is ignored by DDP but requires gradient! "
"You should handle its optimizer update by yourself!")
else:
ddp_param_list.append(param)
for p, fp32_p in zip(ddp_param_list, module.fp32_params):
chunk_16 = self.chunk_manager.get_chunk(p)
if chunk_16 not in self.chunk16_set:
chunk_16.l2_norm_flag = self.clipping_flag
self.chunk16_set.add(chunk_16)
self.__init__optimizer()
# Grad scaler
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale)
self._found_overflow: torch.Tensor = torch.zeros(1, dtype=torch.int64, device=get_current_device())
self._logger = get_dist_logger()
self.gpu_margin_mem_ratio: float = float(gpu_margin_mem_ratio)
assert 0.0 <= self.gpu_margin_mem_ratio <= 1.0, f'gpu_margin_mem_ratio must >=0.0 and <=1.0'
# Only move fp32 shards from CPU to GPU when user allows and inner optimizer is valid
# Inner optimizer must support optimizing hybrid (CPU and CUDA) tensors,
# and it must set `num_fp32_shards_per_param` correctly
self._should_move_fp32_params_h2d: bool = self.gemini_manager.is_cuda_margin_mem_avail and self.gpu_margin_mem_ratio > 0.0 and getattr(
optim, 'num_fp32_shards_per_param', 0) >= 2
if self.gpu_margin_mem_ratio > 0.0 and not self.gemini_manager.is_cuda_margin_mem_avail:
self._logger.warning(f'gpu_margin_mem_ratio is meaningless when placement_policy is not "auto"', ranks=[0])
self._register_states = disposable(self._register_states_)
def _set_grad_ptr(self):
for group in self.param_groups:
for fake_param in group['params']:
chunk32 = self.param_to_chunk32[fake_param]
begin, end = self.param_to_range[fake_param]
chunk16 = chunk32.paired_chunk
fake_param.data = chunk16.payload[begin:end]
fake_param.grad = fake_param.data
fake_param.data = chunk32.payload[begin:end]
def _update_fp16_params(self):
none_tensor = torch.empty([0])
for group in self.param_groups:
for fake_param in group['params']:
assert fake_param.grad is None
fake_param.data = none_tensor
for chunk16 in self.chunk16_set:
chunk16.optim_update()
def _check_overflow(self):
# clear previous overflow record
self._found_overflow.fill_(self.module.overflow_counter)
# all-reduce across global group
dist.all_reduce(self._found_overflow)
return self._found_overflow.item() > 0
def _clear_global_norm(self) -> None:
for c16 in self.chunk16_set:
c16.l2_norm = None
def _calc_global_norm(self) -> float:
norm_sqr: float = 0.0
group_to_norm = dict()
for c16 in self.chunk16_set:
assert c16.l2_norm is not None
if c16.is_gathered:
norm_sqr += c16.l2_norm
else:
# this chunk is sharded, use communication to collect total norm
if c16.torch_pg not in group_to_norm:
group_to_norm[c16.torch_pg] = 0.0
group_to_norm[c16.torch_pg] += c16.l2_norm
c16.l2_norm = None # clear l2 norm
comm_buffer = torch.zeros(1, dtype=torch.float, device=get_current_device())
for group, part_norm in group_to_norm.items():
comm_buffer.fill_(part_norm)
dist.all_reduce(comm_buffer, group=group)
norm_sqr += comm_buffer.item()
global_norm = math.sqrt(norm_sqr)
return global_norm
def _get_combined_scale(self):
loss_scale = 1
if self.optim_state == OptimState.SCALED:
loss_scale = self.loss_scale
self.optim_state = OptimState.UNSCALED
combined_scale = loss_scale
if self.clipping_flag:
total_norm = self._calc_global_norm()
clip = ((total_norm / loss_scale) + 1e-6) / self.max_norm
if clip > 1:
combined_scale = clip * loss_scale
if combined_scale == 1:
return -1
else:
return combined_scale
@property
def loss_scale(self):
return self.grad_scaler.scale.item()
def zero_grad(self, *args, **kwargs):
self.module.overflow_counter = 0
return self.optim.zero_grad(set_to_none=True)
def step(self, *args, **kwargs):
self._maybe_move_fp32_params()
self._set_grad_ptr()
found_inf = self._check_overflow()
if found_inf:
self.optim_state = OptimState.UNSCALED # no need to unscale grad
self.grad_scaler.update(found_inf) # update gradient scaler
self._logger.info(f'Found overflow. Skip step')
self._clear_global_norm() # clear recorded norm
self.zero_grad() # reset all gradients
self._update_fp16_params()
return
# get combined scale. combined scale = loss scale * clipping norm
# so that gradient = gradient / combined scale
combined_scale = self._get_combined_scale()
self.grad_scaler.update(found_inf)
ret = self.optim.step(div_scale=combined_scale, *args, **kwargs)
self._register_states()
self.zero_grad()
self._update_fp16_params()
return ret
def clip_grad_norm(self, model: torch.nn.Module, max_norm: float, norm_type: float = 2.0):
raise NotImplementedError
def backward(self, loss: torch.Tensor):
loss = self.loss_scale * loss
self.optim_state = OptimState.SCALED
self.module.backward(loss)
def backward_by_grad(self, tensor: torch.Tensor, grad: torch.Tensor):
# This function is called except the last stage of pipeline parallel
# It receives the scaled grad from the previous rank
# No need to scale the grad again
# Need to unscale when optimizing
self.optim_state = OptimState.SCALED
self.module.backward_by_grad(tensor, grad)
def _maybe_move_fp32_params(self):
if self._should_move_fp32_params_h2d:
self._should_move_fp32_params_h2d = False
available_cuda_margin_mem = self.gemini_manager.cuda_margin_mem * self.gpu_margin_mem_ratio
fp32_params_available_cuda_margin_mem = available_cuda_margin_mem / self.optim.num_fp32_shards_per_param
fp32_params_used_cuda_margin_mem = 0
for group in self.param_groups:
for fake_param in group['params']:
chunk32 = self.param_to_chunk32[fake_param]
chunk16 = chunk32.paired_chunk
if chunk32.device_type == 'cuda':
continue
if fp32_params_used_cuda_margin_mem + chunk32.payload_mem < fp32_params_available_cuda_margin_mem:
self.chunk_manager.move_chunk(chunk32, get_current_device())
# stores grad now
self.chunk_manager.move_chunk(chunk16, get_current_device())
self.module.set_chunk_grad_device(chunk16, get_current_device())
fp32_params_used_cuda_margin_mem += chunk32.payload_mem
for group in self.param_groups:
for fake_param in group['params']:
chunk32 = self.param_to_chunk32[fake_param]
if chunk32.device_type == 'cuda':
state = self.optim.state[fake_param]
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(get_current_device())
def _register_states_(self):
for group in self.optim.param_groups:
for p in group['params']:
state = self.optim.state[p]
for val in state.values():
if isinstance(val, torch.Tensor):
self.chunk_manager.add_extern_static_tensor(val)
def __init__optimizer(self):
def get_range_pair(local_chunk: Chunk, local_param: Parameter):
param_info = local_chunk.tensors_info[local_param]
if local_chunk.keep_gathered:
return param_info.offset, param_info.end
begin = max(0, param_info.offset - local_chunk.shard_begin)
end = min(local_chunk.shard_size, param_info.end - local_chunk.shard_begin)
return begin, end
for group in self.optim.param_groups:
fake_params_list = list()
for param in group['params']:
if is_ddp_ignored(param):
continue
chunk16 = self.chunk_manager.get_chunk(param)
range_pair = get_range_pair(chunk16, param)
if range_pair[0] >= range_pair[1]:
continue
fake_param = torch.nn.Parameter(torch.empty([0]))
self.param_to_chunk32[fake_param] = chunk16.paired_chunk
self.param_to_range[fake_param] = range_pair
fake_params_list.append(fake_param)
group['params'] = fake_params_list