|
|
|
import copy
|
|
|
|
import operator
|
|
|
|
import warnings
|
|
|
|
from functools import reduce
|
|
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.fx.node import Node
|
|
|
|
from torch.utils._pytree import tree_map
|
|
|
|
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
|
|
|
|
|
|
from ..constants import INFINITY_COST
|
|
|
|
|
|
|
|
__all__ = ['generate_sharding_spec', 'generate_resharding_costs']
|
|
|
|
|
|
|
|
|
|
|
|
def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh,
|
|
|
|
dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
|
|
|
|
"""
|
|
|
|
Generate the sharding spec of the tensor based on the given dim_partition_dict.
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_ (Union[Node, torch.Tensor]): the input can be a Node object or a PyTorch tensor. If a node is used, it will look for its meta data associated with this node.
|
|
|
|
device_mesh (DeviceMesh): a DeviceMesh object which contains the meta information about the cluster.
|
|
|
|
dim_partition_dict (Dict[int, List[int]]): a dictionary to specify the sharding specs, the key is the tensor dimension and the value is the mesh dimension for sharding.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if isinstance(input_, Node):
|
|
|
|
assert hasattr(input_, '_meta_data'), f'The given node has no attribute _meta_data'
|
|
|
|
meta_tensor = input_._meta_data
|
|
|
|
assert meta_tensor is not None, "The given node's _meta_data attribute is None"
|
|
|
|
shape = meta_tensor.shape
|
|
|
|
elif isinstance(input_, torch.Tensor):
|
|
|
|
shape = input_.shape
|
|
|
|
else:
|
|
|
|
raise TypeError(
|
|
|
|
f'We cannot generate sharding spec for {type(input_)} type, only torch.fx.Node or torch.Tensor is expected.'
|
|
|
|
)
|
|
|
|
for dim_index, sharding_index_list in dim_partition_dict.items():
|
|
|
|
sharding_list = [device_mesh.mesh_shape[sharding_index] for sharding_index in sharding_index_list]
|
|
|
|
sharding_size = reduce(operator.mul, sharding_list, 1)
|
|
|
|
assert shape[
|
|
|
|
dim_index] % sharding_size == 0, f'we cannot shard the {dim_index} dimension of tensor into {sharding_size} partitions.'
|
|
|
|
|
|
|
|
sharding_spec = ShardingSpec(device_mesh=device_mesh, entire_shape=shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
return sharding_spec
|
|
|
|
|
|
|
|
|
|
|
|
def generate_resharding_costs(nodes: List[Node],
|
|
|
|
sharding_specs: List[ShardingSpec],
|
|
|
|
count_backward: Optional[bool] = True,
|
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
|
index=None):
|
|
|
|
'''
|
|
|
|
Compute the resharding costs with this specific strategy.
|
|
|
|
|
|
|
|
Argument:
|
|
|
|
nodes (List[Node]): a list of nodes
|
|
|
|
sharding_spec_for_input(ShardingSpec): a list of ShardingSpec for the nodes.
|
|
|
|
count_backward (Optional[bool]): whether to include the cost of resharding in the backward pass, default is True. False can be used for inference.
|
|
|
|
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
|
|
|
|
'''
|
|
|
|
# The resharding_cost of weight is counted due to sharing weight cases.
|
|
|
|
resharding_costs = {}
|
|
|
|
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
|
|
|
|
|
|
|
|
# shape consistency manager is a singleton class
|
|
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
|
|
|
|
|
|
|
for input_node, input_spec in zip(nodes, sharding_specs):
|
|
|
|
resharding_costs[input_node] = []
|
|
|
|
for strategy in input_node.strategies_vector:
|
|
|
|
input_sharding_spec = strategy.output_sharding_spec
|
|
|
|
if not isinstance(input_sharding_spec, ShardingSpec):
|
|
|
|
assert isinstance(input_sharding_spec, list), 'only ShardingSpec or List[ShardingSpec] is expected.'
|
|
|
|
input_sharding_spec = input_sharding_spec[index]
|
|
|
|
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
|
|
|
|
try:
|
|
|
|
# compute the resharding cost
|
|
|
|
_, _, total_resharding_cost = shape_consistency_manager.shape_consistency(
|
|
|
|
input_sharding_spec, input_spec)
|
|
|
|
|
|
|
|
# we need multiply the size of elem dtype to get correct communication cost
|
|
|
|
resharding_cost = total_resharding_cost["total"] * size_per_elem_bytes
|
|
|
|
except AssertionError as e:
|
|
|
|
warnings.warn(f'{e}')
|
|
|
|
resharding_cost = INFINITY_COST
|
|
|
|
resharding_costs[input_node].append(resharding_cost)
|
|
|
|
return resharding_costs
|
|
|
|
|
|
|
|
|
|
|
|
def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_length_threshold: int = 20):
|
|
|
|
'''
|
|
|
|
Find the largest repeat blocks in the graph, whose length is larger than the threshold.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
gm (GraphModule): the graph module to be analyzed.
|
|
|
|
common_length_threshold (int): the threshold of the repeat block length.
|
|
|
|
'''
|
|
|
|
|
|
|
|
# graph = gm.graph
|
|
|
|
|
|
|
|
def _process_args(args):
|
|
|
|
new_args = []
|
|
|
|
for arg in args:
|
|
|
|
if hasattr(arg, '_meta_data'):
|
|
|
|
meta_data = arg._meta_data
|
|
|
|
else:
|
|
|
|
meta_data = arg
|
|
|
|
|
|
|
|
def _process_arg(data):
|
|
|
|
if isinstance(data, torch.Tensor):
|
|
|
|
data = data.size()
|
|
|
|
elif isinstance(data, slice):
|
|
|
|
data = (data.start, data.step, data.stop)
|
|
|
|
return data
|
|
|
|
|
|
|
|
new_meta_data = tree_map(_process_arg, meta_data)
|
|
|
|
new_args.append(new_meta_data)
|
|
|
|
|
|
|
|
return new_args
|
|
|
|
|
|
|
|
def _all_equal(check_list, check_fn):
|
|
|
|
base_value = check_list[-1]
|
|
|
|
for e in check_list:
|
|
|
|
if not check_fn(e, base_value):
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
def _check_node_list_equal(l1, l2):
|
|
|
|
if len(l1) != len(l2):
|
|
|
|
return False
|
|
|
|
for node1, node2 in zip(l1, l2):
|
|
|
|
if hash(node1.hash_key) != hash(node2.hash_key):
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
def _check_node_equal(node1, node2):
|
|
|
|
if hash(node1.hash_key) == hash(node2.hash_key):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
for index, node in enumerate(node_list):
|
|
|
|
if node.op == 'call_module':
|
|
|
|
target = node.target
|
|
|
|
submod = root_module.get_submodule(target)
|
|
|
|
submod_type = type(submod)
|
|
|
|
target = submod_type
|
|
|
|
else:
|
|
|
|
target = node.target
|
|
|
|
|
|
|
|
new_args = _process_args(node.args)
|
|
|
|
|
|
|
|
if node.op != 'get_attr':
|
|
|
|
hash_key = (node.op, target, *new_args)
|
|
|
|
else:
|
|
|
|
hash_key = (node.op,)
|
|
|
|
|
|
|
|
setattr(node, 'hash_key', hash_key)
|
|
|
|
|
|
|
|
hash_value_to_node_dict = {}
|
|
|
|
|
|
|
|
for index, node in enumerate(node_list):
|
|
|
|
hash_value = hash(node.hash_key)
|
|
|
|
if hash_value not in hash_value_to_node_dict:
|
|
|
|
hash_value_to_node_dict[hash_value] = []
|
|
|
|
hash_value_to_node_dict[hash_value].append(index)
|
|
|
|
|
|
|
|
# node_list = list(graph.nodes)
|
|
|
|
|
|
|
|
node_list_start = 0
|
|
|
|
max_common_length = common_length_threshold
|
|
|
|
common_blocks_index = []
|
|
|
|
for index, node in enumerate(node_list):
|
|
|
|
# the comparison will be triggered if a common node appears
|
|
|
|
if len(hash_value_to_node_dict[hash(node.hash_key)]) >= 2:
|
|
|
|
start_index_list = hash_value_to_node_dict[hash(node.hash_key)]
|
|
|
|
check_block_list = [node_list[start:start + max_common_length] for start in start_index_list]
|
|
|
|
|
|
|
|
common_label = True
|
|
|
|
if not _all_equal(check_block_list, _check_node_list_equal):
|
|
|
|
common_label = False
|
|
|
|
|
|
|
|
if common_label:
|
|
|
|
common_blocks_index = copy.deepcopy(start_index_list)
|
|
|
|
max_step = len(node_list) - common_blocks_index[-1] - max_common_length - 1
|
|
|
|
|
|
|
|
for i in range(max_step):
|
|
|
|
# add assertion to avoid out of index
|
|
|
|
next_node_list = [node_list[index + max_common_length + i] for index in start_index_list]
|
|
|
|
if not _all_equal(next_node_list, _check_node_equal):
|
|
|
|
max_step = i
|
|
|
|
break
|
|
|
|
max_common_length += max_step
|
|
|
|
node_list_start += max_common_length
|
|
|
|
|
|
|
|
# recover common subgraph from the index
|
|
|
|
common_blocks = []
|
|
|
|
for start in common_blocks_index:
|
|
|
|
common_blocks.append(node_list[start:start + max_common_length])
|
|
|
|
|
|
|
|
return common_blocks
|