mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] find repeat blocks (#2854)
* [autoparallel] find repeat blocks * polish * polish * polishpull/2912/head
parent
2e16f842a9
commit
0f392d7403
|
@ -1,13 +1,16 @@
|
|||
import copy
|
||||
import operator
|
||||
import warnings
|
||||
from functools import reduce
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch.fx.node import Node
|
||||
from torch.utils._pytree import tree_map
|
||||
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
from torch.fx.node import Node
|
||||
|
||||
from ..constants import INFINITY_COST
|
||||
|
||||
|
@ -18,7 +21,7 @@ def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: Devic
|
|||
dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
|
||||
"""
|
||||
Generate the sharding spec of the tensor based on the given dim_partition_dict.
|
||||
|
||||
|
||||
|
||||
Args:
|
||||
input_ (Union[Node, torch.Tensor]): the input can be a Node object or a PyTorch tensor. If a node is used, it will look for its meta data associated with this node.
|
||||
|
@ -59,7 +62,7 @@ def generate_resharding_costs(nodes: List[Node],
|
|||
nodes (List[Node]): a list of nodes
|
||||
sharding_spec_for_input(ShardingSpec): a list of ShardingSpec for the nodes.
|
||||
count_backward (Optional[bool]): whether to include the cost of resharding in the backward pass, default is True. False can be used for inference.
|
||||
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
|
||||
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
|
||||
'''
|
||||
# The resharding_cost of weight is counted due to sharing weight cases.
|
||||
resharding_costs = {}
|
||||
|
@ -88,3 +91,116 @@ def generate_resharding_costs(nodes: List[Node],
|
|||
resharding_cost = INFINITY_COST
|
||||
resharding_costs[input_node].append(resharding_cost)
|
||||
return resharding_costs
|
||||
|
||||
|
||||
def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_length_threshold: int = 20):
|
||||
'''
|
||||
Find the largest repeat blocks in the graph, whose length is larger than the threshold.
|
||||
|
||||
Args:
|
||||
gm (GraphModule): the graph module to be analyzed.
|
||||
common_length_threshold (int): the threshold of the repeat block length.
|
||||
'''
|
||||
|
||||
# graph = gm.graph
|
||||
|
||||
def _process_args(args):
|
||||
new_args = []
|
||||
for arg in args:
|
||||
if hasattr(arg, '_meta_data'):
|
||||
meta_data = arg._meta_data
|
||||
else:
|
||||
meta_data = arg
|
||||
|
||||
def _process_arg(data):
|
||||
if isinstance(data, torch.Tensor):
|
||||
data = data.size()
|
||||
elif isinstance(data, slice):
|
||||
data = (data.start, data.step, data.stop)
|
||||
return data
|
||||
|
||||
new_meta_data = tree_map(_process_arg, meta_data)
|
||||
new_args.append(new_meta_data)
|
||||
|
||||
return new_args
|
||||
|
||||
def _all_equal(check_list, check_fn):
|
||||
base_value = check_list[-1]
|
||||
for e in check_list:
|
||||
if not check_fn(e, base_value):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _check_node_list_equal(l1, l2):
|
||||
if len(l1) != len(l2):
|
||||
return False
|
||||
for node1, node2 in zip(l1, l2):
|
||||
if hash(node1.hash_key) != hash(node2.hash_key):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _check_node_equal(node1, node2):
|
||||
if hash(node1.hash_key) == hash(node2.hash_key):
|
||||
return True
|
||||
return False
|
||||
|
||||
for index, node in enumerate(node_list):
|
||||
if node.op == 'call_module':
|
||||
target = node.target
|
||||
submod = root_module.get_submodule(target)
|
||||
submod_type = type(submod)
|
||||
target = submod_type
|
||||
else:
|
||||
target = node.target
|
||||
|
||||
new_args = _process_args(node.args)
|
||||
|
||||
if node.op != 'get_attr':
|
||||
hash_key = (node.op, target, *new_args)
|
||||
else:
|
||||
hash_key = (node.op,)
|
||||
|
||||
setattr(node, 'hash_key', hash_key)
|
||||
|
||||
hash_value_to_node_dict = {}
|
||||
|
||||
for index, node in enumerate(node_list):
|
||||
hash_value = hash(node.hash_key)
|
||||
if hash_value not in hash_value_to_node_dict:
|
||||
hash_value_to_node_dict[hash_value] = []
|
||||
hash_value_to_node_dict[hash_value].append(index)
|
||||
|
||||
# node_list = list(graph.nodes)
|
||||
|
||||
node_list_start = 0
|
||||
max_common_length = common_length_threshold
|
||||
common_blocks_index = []
|
||||
for index, node in enumerate(node_list):
|
||||
# the comparison will be triggered if a common node appears
|
||||
if len(hash_value_to_node_dict[hash(node.hash_key)]) >= 2:
|
||||
start_index_list = hash_value_to_node_dict[hash(node.hash_key)]
|
||||
check_block_list = [node_list[start:start + max_common_length] for start in start_index_list]
|
||||
|
||||
common_label = True
|
||||
if not _all_equal(check_block_list, _check_node_list_equal):
|
||||
common_label = False
|
||||
|
||||
if common_label:
|
||||
common_blocks_index = copy.deepcopy(start_index_list)
|
||||
max_step = len(node_list) - common_blocks_index[-1] - max_common_length - 1
|
||||
|
||||
for i in range(max_step):
|
||||
# add assertion to avoid out of index
|
||||
next_node_list = [node_list[index + max_common_length + i] for index in start_index_list]
|
||||
if not _all_equal(next_node_list, _check_node_equal):
|
||||
max_step = i
|
||||
break
|
||||
max_common_length += max_step
|
||||
node_list_start += max_common_length
|
||||
|
||||
# recover common subgraph from the index
|
||||
common_blocks = []
|
||||
for start in common_blocks_index:
|
||||
common_blocks.append(node_list[start:start + max_common_length])
|
||||
|
||||
return common_blocks
|
||||
|
|
|
@ -0,0 +1,110 @@
|
|||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.fx import GraphModule
|
||||
from transformers.pytorch_utils import Conv1D
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.utils.factory import find_repeat_blocks
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.testing import parameterize
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
|
||||
NUM_REPEAT_BLOCKS = 4
|
||||
BATCH_SIZE = 1
|
||||
SEQ_LENGTH = 32
|
||||
HIDDEN_DIM = 384
|
||||
|
||||
|
||||
class RepeatBlock(nn.Module):
|
||||
|
||||
def __init__(self, intermediate_size, hidden_size):
|
||||
super().__init__()
|
||||
self.c_fc = Conv1D(intermediate_size, hidden_size)
|
||||
self.c_proj = Conv1D(hidden_size, intermediate_size)
|
||||
self.act = torch.nn.ReLU()
|
||||
|
||||
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
||||
hidden_states = self.c_fc(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.c_proj(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class RepeatModel(nn.Module):
|
||||
|
||||
def __init__(self, intermediate_size, hidden_size, num_layers):
|
||||
super().__init__()
|
||||
self.blocks = nn.ModuleList([RepeatBlock(intermediate_size, hidden_size) for i in range(num_layers)])
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class NonRepeatBlock(nn.Module):
|
||||
|
||||
def __init__(self, intermediate_size, hidden_size, layer_index):
|
||||
super().__init__()
|
||||
intermediate_size //= (layer_index + 1)
|
||||
self.c_fc = Conv1D(intermediate_size, hidden_size)
|
||||
self.c_proj = Conv1D(hidden_size, intermediate_size)
|
||||
self.act = torch.nn.ReLU()
|
||||
|
||||
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
||||
hidden_states = self.c_fc(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.c_proj(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class NonRepeatModel(nn.Module):
|
||||
|
||||
def __init__(self, intermediate_size, hidden_size, num_layers):
|
||||
super().__init__()
|
||||
self.blocks = nn.ModuleList([NonRepeatBlock(intermediate_size, hidden_size, i) for i in range(num_layers)])
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@parameterize('model_cls', [RepeatModel, NonRepeatModel])
|
||||
def test_repeat_blocks(model_cls):
|
||||
|
||||
model = model_cls(4 * HIDDEN_DIM, HIDDEN_DIM, NUM_REPEAT_BLOCKS)
|
||||
|
||||
tracer = ColoTracer()
|
||||
input_sample = {'x': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta')}
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
|
||||
node_list = list(graph.nodes)
|
||||
root_module = graph.owning_module
|
||||
common_blocks = find_repeat_blocks(node_list, root_module, common_length_threshold=10)
|
||||
|
||||
total_num_nodes = len(list(graph.nodes))
|
||||
# remove the input placeholder node and the output node
|
||||
num_repeat_nodes_per_block = (total_num_nodes - 2) // NUM_REPEAT_BLOCKS
|
||||
for common_block in common_blocks:
|
||||
print(common_block)
|
||||
if model_cls == RepeatModel:
|
||||
assert len(common_blocks) == NUM_REPEAT_BLOCKS
|
||||
assert len(common_blocks[0]) == num_repeat_nodes_per_block
|
||||
elif model_cls == NonRepeatModel:
|
||||
assert len(common_blocks) == 0
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_repeat_blocks()
|
Loading…
Reference in New Issue