2022-11-30 07:45:26 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.context import MOE_CONTEXT
|
2023-09-18 08:31:06 +00:00
|
|
|
from colossalai.legacy.amp import convert_to_apex_amp
|
2023-09-04 03:33:40 +00:00
|
|
|
from colossalai.legacy.engine.gradient_handler import MoeGradientHandler
|
2022-11-30 07:45:26 +00:00
|
|
|
from colossalai.nn import MoeLoss
|
|
|
|
from colossalai.nn.optimizer import CPUAdam
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import assert_equal_in_group, parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
from colossalai.utils import get_current_device
|
2023-04-04 05:48:16 +00:00
|
|
|
from colossalai.zero.legacy.init_ctx import ZeroInitContext
|
|
|
|
from colossalai.zero.legacy.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
|
|
|
|
from colossalai.zero.legacy.sharded_model import ShardedModelV2
|
|
|
|
from colossalai.zero.legacy.sharded_model.utils import col_model_deepcopy
|
|
|
|
from colossalai.zero.legacy.sharded_optim import ShardedOptimizerV2
|
|
|
|
from colossalai.zero.low_level._utils import has_inf_or_nan
|
2022-11-30 07:45:26 +00:00
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
from tests.test_moe.test_moe_zero_init import MoeModel
|
2023-04-06 01:38:25 +00:00
|
|
|
from tests.test_zero.test_legacy.common import CONFIG, check_sharded_model_params
|
2022-11-30 07:45:26 +00:00
|
|
|
|
|
|
|
|
|
|
|
def _run_step(model, optimizer, data, label, criterion, grad_handler):
|
|
|
|
model.train()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
if criterion:
|
|
|
|
y = model(data)
|
|
|
|
loss = criterion(y, label)
|
|
|
|
else:
|
|
|
|
loss = model(data, label)
|
|
|
|
|
|
|
|
loss = loss.float()
|
|
|
|
if isinstance(model, ShardedModelV2):
|
|
|
|
optimizer.backward(loss)
|
|
|
|
else:
|
|
|
|
loss.backward()
|
|
|
|
|
|
|
|
if grad_handler is not None:
|
|
|
|
grad_handler.handle_gradient()
|
|
|
|
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize("cpu_offload", [True])
|
2023-09-19 06:20:26 +00:00
|
|
|
@parameterize("use_cpuadam", [True]) # We do not use Hybrid Adam right now, since it has a little bug
|
2022-11-30 07:45:26 +00:00
|
|
|
@parameterize("reuse_fp16_shard", [True, False])
|
|
|
|
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
|
2023-09-19 06:20:26 +00:00
|
|
|
def _run_test_sharded_optim_v2(
|
|
|
|
cpu_offload, shard_strategy_class, use_cpuadam, reuse_fp16_shard, gpu_margin_mem_ratio=0.0
|
|
|
|
):
|
2022-11-30 07:45:26 +00:00
|
|
|
shard_strategy = shard_strategy_class()
|
|
|
|
if use_cpuadam and cpu_offload is False:
|
|
|
|
return
|
|
|
|
MOE_CONTEXT.reset_loss()
|
2023-09-19 06:20:26 +00:00
|
|
|
get_components_func = non_distributed_component_funcs.get_callable("hanging_param_model")
|
2022-11-30 07:45:26 +00:00
|
|
|
_, train_dataloader, _, optimizer_class, _ = get_components_func()
|
|
|
|
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss)
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
with ZeroInitContext(
|
|
|
|
target_device=torch.device("cpu") if cpu_offload else get_current_device(),
|
|
|
|
shard_strategy=shard_strategy,
|
|
|
|
shard_param=True,
|
|
|
|
):
|
2022-11-30 07:45:26 +00:00
|
|
|
zero_model = MoeModel(checkpoint=True)
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
zero_model = ShardedModelV2(
|
|
|
|
zero_model,
|
|
|
|
shard_strategy,
|
|
|
|
tensor_placement_policy="cpu" if cpu_offload else "cuda",
|
|
|
|
reuse_fp16_shard=reuse_fp16_shard,
|
|
|
|
)
|
2022-11-30 07:45:26 +00:00
|
|
|
|
|
|
|
# check whether parameters are identical in ddp
|
|
|
|
for name, p in zero_model.named_parameters():
|
|
|
|
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
|
|
|
|
assert_equal_in_group(p.colo_attr.data_payload.to(get_current_device()))
|
|
|
|
|
|
|
|
model = MoeModel(checkpoint=True).half()
|
|
|
|
col_model_deepcopy(zero_model, model)
|
|
|
|
model = model.cuda().float()
|
|
|
|
|
|
|
|
if use_cpuadam:
|
|
|
|
optimizer_class = CPUAdam
|
|
|
|
optim = optimizer_class(model.parameters(), lr=1e-3)
|
|
|
|
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
|
2023-09-19 06:20:26 +00:00
|
|
|
sharded_optim = ShardedOptimizerV2(
|
|
|
|
zero_model, sharded_optim, initial_scale=2**5, gpu_margin_mem_ratio=gpu_margin_mem_ratio
|
|
|
|
)
|
2022-11-30 07:45:26 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False)
|
2022-11-30 07:45:26 +00:00
|
|
|
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
|
|
|
|
apex_grad_handler = MoeGradientHandler(model)
|
|
|
|
|
|
|
|
for i, (data, label) in enumerate(train_dataloader):
|
|
|
|
if i > 5:
|
|
|
|
break
|
|
|
|
data, label = data.cuda(), label.cuda()
|
|
|
|
_run_step(apex_model, apex_optimizer, data, label, criterion, apex_grad_handler)
|
|
|
|
_run_step(zero_model, sharded_optim, data, label, criterion, None)
|
|
|
|
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam)
|
|
|
|
for param in model.parameters():
|
|
|
|
assert not has_inf_or_nan(param)
|
|
|
|
|
|
|
|
|
|
|
|
def _run_dist(rank, world_size, port):
|
2023-09-19 06:20:26 +00:00
|
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
2022-11-30 07:45:26 +00:00
|
|
|
MOE_CONTEXT.setup(seed=42)
|
|
|
|
_run_test_sharded_optim_v2()
|
|
|
|
|
|
|
|
|
|
|
|
# use_cpuadam = True can be used with cpu_offload = False
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize("world_size", [2])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_moe_zero_optim(world_size):
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(_run_dist, world_size)
|
2022-11-30 07:45:26 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
if __name__ == "__main__":
|
2022-11-30 07:45:26 +00:00
|
|
|
test_moe_zero_optim(world_size=4)
|