|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.pipeline.pipelinable import PipelinableContext
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use, rerun_on_exception, spawn
|
|
|
|
|
|
|
|
NUM_CHUNKS = 1
|
|
|
|
PIPELINE_SIZE = 2
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, dim: int = 256):
|
|
|
|
super().__init__()
|
|
|
|
intermediate_dim = dim * 4
|
|
|
|
self.dense_1 = torch.nn.Linear(dim, intermediate_dim)
|
|
|
|
self.activation = torch.nn.GELU()
|
|
|
|
self.dense_2 = torch.nn.Linear(intermediate_dim, dim)
|
|
|
|
self.dropout = torch.nn.Dropout(0.1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.dense_1(x)
|
|
|
|
x = self.activation(x)
|
|
|
|
x = self.dense_2(x)
|
|
|
|
x = self.dropout(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def run_pipelinable(rank, world_size, port):
|
|
|
|
pipelinable = PipelinableContext()
|
|
|
|
with pipelinable:
|
|
|
|
model = MLP()
|
|
|
|
|
|
|
|
assert pipelinable.policy == "balanced"
|
|
|
|
pipelinable.policy = "uniform"
|
|
|
|
assert pipelinable.policy == "uniform"
|
|
|
|
pipelinable.to_layer_list()
|
|
|
|
|
|
|
|
assert pipelinable.layers_count == len(list(model.children()))
|
|
|
|
|
|
|
|
pipeline_model_part_0 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 0)
|
|
|
|
assert isinstance(pipeline_model_part_0, torch.nn.Module)
|
|
|
|
pipeline_model_part_1 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 1)
|
|
|
|
assert isinstance(pipeline_model_part_1, torch.nn.Module)
|
|
|
|
|
|
|
|
layers_count_in_part_0 = len(list(pipeline_model_part_0._module_list))
|
|
|
|
layers_count_in_part_1 = len(list(pipeline_model_part_1._module_list))
|
|
|
|
|
|
|
|
assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count
|
|
|
|
|
|
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_pipelinable():
|
|
|
|
spawn(run_pipelinable, 1)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_pipelinable()
|