[pipelinable]use pipelinable context to initialize non-pipeline model (#816)

* [CLI] add CLI launcher

* Revert "[CLI] add CLI launcher"

This reverts commit df7e6506d4.

* [pipeline]add module lazy init feature to support large model initization.

* [pipeline]add to_layer_list and partition method to support arbitrary non-pp model

* refactor the module structure

* polish

* [pipelinable]add unit test for pipelinable

* polish

* polish

* Fix CodeFactor issues.
pull/843/head^2
YuliangLiu0306 2022-04-24 13:03:12 +08:00 committed by GitHub
parent ea0a2ed25f
commit 35ea6e1023
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 299 additions and 13 deletions

View File

@ -12,17 +12,6 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
super().__init__()
self._lazy_memory_allocate = lazy_memory_allocate
def _pre_context_exec(self):
"""
The Callback function when entering the context
"""
pass
def _post_context_exec(self):
"""The callback function when exiting context.
"""
pass
def _post_init_method(self, module: torch.nn.Module):
"""
The function to call at the end of the constructor of each module.

View File

@ -0,0 +1,211 @@
import torch
import functools
from colossalai.utils.model.utils import _substitute_init_recursively, InsertPostInitMethodToModuleSubClasses, call_to_str
from colossalai.builder.pipeline import partition_uniform, partition_balanced
from colossalai.core import global_context as gpc
class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
def __init__(self):
super().__init__()
self._layer_spec_dict = {}
self._root_children = None
self._model = None
self._layer_spec_list = []
self._func_dict = {}
self._policy = "balanced"
@property
def policy(self):
return self._policy
@property
def layers_count(self):
return len(self._layer_spec_list)
@property
def funcs_count(self):
return len(self._func_dict)
def _pre_context_exec(self):
"""
The Callback function when entering the context
"""
# reserve rng states
self.cpu_rng_state = torch.get_rng_state()
self.cuda_rng_state = torch.cuda.get_rng_state()
def _post_context_exec(self):
"""
The callback function when exiting context.
"""
# reset rng states
torch.set_rng_state(self.cpu_rng_state)
torch.cuda.set_rng_state(self.cuda_rng_state)
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
"""
The function to call at the end of the constructor of each module.
NOTE() The module may be passed to this function multiple times.
"""
module_id = id(module)
modified_args = []
for obj in args:
if issubclass(obj.__class__, torch.nn.modules.module.Module):
obj = self._layer_spec_dict[id(obj)]
modified_args.append(obj)
# (lyl)TODO: analyse kwargs as well
modified_args = tuple(modified_args)
self._root_children = list(module.children())
self._model = module
layer_spec = LayerSpec(module.__class__, *modified_args, **kwargs)
layer_spec.set_children(module.children())
self._layer_spec_dict[module_id] = layer_spec
for param in module.parameters(recurse=False):
param.data = torch.rand(1, 1)
def to_layer_list(self, exec_seq=None):
"""
Create a layer spec list and func list with execution sequence given by user.
If exec_seq is None, we will take the module initizing order as execution order.
"""
if exec_seq is None:
#if user do not provide the model executing sequence, we use the initialization order as the executing order.
for child in self._root_children:
layer_spec = self._layer_spec_dict[id(child)]
if layer_spec.typename in (torch.nn.modules.container.ModuleList,
torch.nn.modules.container.Sequential):
for child_in_container in layer_spec.children:
self._layer_spec_list.append(self._layer_spec_dict[id(child_in_container)])
else:
self._layer_spec_list.append(layer_spec)
else:
func_key = "first"
for index, element in enumerate(exec_seq):
if isinstance(element, str):
module = dict(self._model.named_modules())[element]
layer_spec = self._layer_spec_dict[id(module)]
func_key = layer_spec
self._layer_spec_list.append(layer_spec)
else:
if func_key not in self._func_dict:
self._func_dict[func_key] = []
self._func_dict[func_key].append(element)
def partition(self, num_chunks, pipeline_size, rank):
"""
Partitioned model will be built respect to partion policy.
The real module instance will be built in this method.
"""
if isinstance(self._policy, str):
if self._policy == "uniform":
parts = partition_uniform(len(self._layer_spec_list), pipeline_size, num_chunks)[rank]
elif self._policy == "balanced":
param_counts = []
for layer_spec in self._layer_spec_list:
param_counts.append(layer_spec.count_params())
parts = partition_balanced(param_counts, pipeline_size, num_chunks)[rank]
else:
raise ValueError("A string partition policy should be one of ['uniform', 'balanced'].")
elif isinstance(self._policy, dict):
parts = self._policy[rank]
else:
raise ValueError("A partition policy should be either a string or a dictionary.")
layers_to_build = []
for start, end in parts:
layers_to_build += self._layer_spec_list[start:end]
func_dict_in_partition = {}
module_list_in_partition = []
if rank == 0 and "first" in self._func_dict:
func_dict_in_partition["first"] = self._func_dict["first"]
for layer in layers_to_build:
module = layer.build()
module_list_in_partition.append(module)
if layer in self._func_dict:
func_dict_in_partition[id(module)] = self._func_dict[layer]
module_list_in_partition = torch.nn.ModuleList(module_list_in_partition)
pipeline_model = PipelinableModel(module_list_in_partition, func_dict_in_partition)
return pipeline_model
def load_policy(self, policy):
self._policy = policy
class PipelinableModel(torch.nn.Module):
def __init__(self, module_list, func_dict):
super().__init__()
self._module_list = module_list
self._func_dict = func_dict
def forward(self, input_tensor):
if "first" in self._func_dict:
funcs = self._func_dict["first"]
if isinstance(funcs, list):
for f in funcs:
input_tensor = f(input_tensor)
else:
input_tensor = funcs(input_tensor)
for module in self._module_list:
input_tensor = module(input_tensor)
if id(module) in self._func_dict:
funcs = self._func_dict[id(module)]
if isinstance(funcs, list):
for f in funcs:
input_tensor = f(input_tensor)
else:
input_tensor = funcs(input_tensor)
return input_tensor
class LayerSpec:
def __init__(self, typename, *module_args, **module_kwargs):
self.typename = typename
self.module_args = module_args
self.module_kwargs = module_kwargs
self.children = None
self._param_count = 0
if not issubclass(typename, torch.nn.Module):
raise RuntimeError('LayerSpec only supports torch.nn.Module types.')
def __repr__(self):
return call_to_str(self.typename.__name__, self.module_args, self.module_kwargs)
@property
def param_count(self):
return self._param_count
def build(self):
"""Build the stored specification."""
recovered_args = []
for obj in self.module_args:
if isinstance(obj, LayerSpec):
obj = obj.build()
recovered_args.append(obj)
recovered_args = tuple(recovered_args)
return self.typename(*recovered_args, **self.module_kwargs)
def set_children(self, children):
self.children = children
def count_params(self):
self._param_count = 0
layer = self.build()
for param in layer.parameters():
self._param_count += param.numel()
return self._param_count
def reset_param_count(self):
self._param_count = 0

View File

@ -9,6 +9,28 @@ def _substitute_init_recursively(cls, func):
func(subcls)
def call_to_str(base, *args, **kwargs):
"""Construct a string representation of a call.
Args:
base (str): name of the call
args (tuple, optional): args to ``base``
kwargs (dict, optional): kwargs supplied to ``base``
Returns:
str: A string representation of base(*args, **kwargs)
"""
name = f'{base}('
if args:
name += ', '.join(repr(arg) for arg in args)
if kwargs:
name += ', '
if kwargs:
name += ', '.join(f'{key}={repr(arg)}' for key, arg in kwargs.items())
name += ')'
return name
class InsertPostInitMethodToModuleSubClasses(object):
def __init__(self, default_dtype: Optional[torch.dtype] = None):
@ -28,7 +50,7 @@ class InsertPostInitMethodToModuleSubClasses(object):
@functools.wraps(f)
def wrapper(module: torch.nn.Module, *args, **kwargs):
f(module, *args, **kwargs)
self._post_init_method(module)
self._post_init_method(module, *args, **kwargs)
return wrapper
@ -71,7 +93,7 @@ class InsertPostInitMethodToModuleSubClasses(object):
return False
# To be implemented by inheriting classes
def _post_init_method(self, module):
def _post_init_method(self, module, *args, **kwargs):
pass
def _pre_context_exec(self):

View File

@ -0,0 +1,64 @@
import os.path as osp
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.utils.model.pipelinable import PipelinableContext
from functools import partial
from colossalai.utils import free_port
from colossalai.testing import rerun_on_exception
NUM_CHUNKS = 1
PIPELINE_SIZE = 2
class MLP(torch.nn.Module):
def __init__(self, dim: int = 256):
super().__init__()
intermediate_dim = dim * 4
self.dense_1 = torch.nn.Linear(dim, intermediate_dim)
self.activation = torch.nn.GELU()
self.dense_2 = torch.nn.Linear(intermediate_dim, dim)
self.dropout = torch.nn.Dropout(0.1)
def forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
x = self.dense_2(x)
x = self.dropout(x)
return x
def run_pipelinable(rank):
pipelinable = PipelinableContext()
with pipelinable:
model = MLP()
assert pipelinable.policy == "balanced"
pipelinable.load_policy("uniform")
assert pipelinable.policy == "uniform"
pipelinable.to_layer_list()
assert pipelinable.layers_count == len(list(model.children()))
pipeline_model_part_0 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 0)
assert isinstance(pipeline_model_part_0, torch.nn.Module)
pipeline_model_part_1 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 1)
assert isinstance(pipeline_model_part_1, torch.nn.Module)
layers_count_in_part_0 = len(list(pipeline_model_part_0._module_list))
layers_count_in_part_1 = len(list(pipeline_model_part_1._module_list))
assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_pipelinable():
mp.spawn(run_pipelinable, nprocs=1)
if __name__ == '__main__':
test_pipelinable()