ColossalAI/tests/test_optimizer/test_fused_adam_kernel.py

95 lines
2.6 KiB
Python
Raw Normal View History

import math
import torch
import torch.nn as nn
from numpy import dtype
from colossalai.testing import parameterize
from colossalai.utils import multi_tensor_applier
def torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
param,
grad,
exp_avg,
exp_avg_sq,
use_adamw,
):
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if use_adamw:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
@parameterize('adamw', [False, True])
@parameterize('step', [1, 2])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, step, p_dtype, g_dtype):
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
fused_adam = fused_optim.multi_tensor_adam
dummy_overflow_buf = torch.cuda.IntTensor([0])
count = 0
for i in range(1024):
p = torch.rand(64, dtype=p_dtype).cuda()
p_copy = p.clone().float()
g = torch.rand(p.shape, dtype=g_dtype).cuda()
g_copy = g.clone().float()
m = torch.rand(p.shape).cuda()
m_copy = m.clone()
v = torch.rand(p.shape).cuda()
v_copy = v.clone()
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
weight_decay = 0
multi_tensor_applier(fused_adam, dummy_overflow_buf, [[g], [p], [m], [v]], lr, beta1, beta2, eps, step, adamw,
True, weight_decay, -1)
torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
p_copy, # fp32 data
g_copy, # fp32 grad
m_copy,
v_copy,
adamw,
)
if torch.isnan(p).any() or torch.isnan(p_copy).any():
count += 1
continue
assert count < 200, "too many nans"
assert torch.allclose(p.to(torch.float), p_copy.to(torch.float), 1e-5,
1e-5), f"failed check, adamw {adamw}, p_dtype {p_dtype}, g_dtype {g_dtype}"