|
|
|
import colossalai
|
|
|
|
import torch
|
|
|
|
import pytest
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
from colossalai.tensor import ColoTensor
|
|
|
|
from colossalai.tensor import distspec
|
|
|
|
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager
|
|
|
|
from colossalai.context import ParallelMode
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from functools import partial
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
|
|
|
|
|
|
|
|
class Conv1D(nn.Module):
|
|
|
|
"""
|
|
|
|
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
|
|
|
|
Basically works like a linear layer but the weights are transposed.
|
|
|
|
Args:
|
|
|
|
nf (`int`): The number of output features.
|
|
|
|
nx (`int`): The number of input features.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, nf, nx):
|
|
|
|
super().__init__()
|
|
|
|
self.nf = nf
|
|
|
|
w = torch.empty(nx, nf)
|
|
|
|
nn.init.normal_(w, std=0.02)
|
|
|
|
self.weight = nn.Parameter(w)
|
|
|
|
self.bias = nn.Parameter(torch.ones(nf))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
size_out = x.size()[:-1] + (self.nf,)
|
|
|
|
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
|
|
|
x = x.view(size_out)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def init_1d_row(weight, bias):
|
|
|
|
spec = TensorSpec(
|
|
|
|
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
|
|
|
[ParallelAction(priority=1, compute_pattern=ComputePattern.TP1D, parallel_mode=ParallelMode.PARALLEL_1D)])
|
|
|
|
with DistSpecManager.no_grad():
|
|
|
|
weight.set_spec(spec)
|
|
|
|
|
|
|
|
|
|
|
|
def check_grad_1d_row(model: torch.nn.Module, weight, bias):
|
|
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
|
|
|
assert torch.allclose(model.weight.grad.chunk(size, 0)[rank], weight.grad)
|
|
|
|
assert torch.allclose(model.bias.grad, bias.grad)
|
|
|
|
|
|
|
|
|
|
|
|
def init_1d_col(weight, bias):
|
|
|
|
spec = TensorSpec(
|
|
|
|
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
|
|
|
[ParallelAction(priority=1, compute_pattern=ComputePattern.TP1D, parallel_mode=ParallelMode.PARALLEL_1D)])
|
|
|
|
with DistSpecManager.no_grad():
|
|
|
|
weight.set_spec(spec)
|
|
|
|
bias.set_spec(spec)
|
|
|
|
|
|
|
|
|
|
|
|
def check_grad_1d_col(model: torch.nn.Module, weight, bias):
|
|
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
|
|
|
assert torch.allclose(model.weight.grad.chunk(size, -1)[rank], weight.grad)
|
|
|
|
assert torch.allclose(model.bias.grad.chunk(size, -1)[rank], bias.grad)
|
|
|
|
|
|
|
|
|
|
|
|
def run_with_spec(spec_init_func, check_grad_func):
|
|
|
|
model = Conv1D(4, 16).cuda()
|
|
|
|
weight = ColoTensor(torch.nn.Parameter(model.weight.detach()))
|
|
|
|
bias = ColoTensor(torch.nn.Parameter(model.bias.detach()))
|
|
|
|
spec_init_func(weight, bias)
|
|
|
|
x = torch.rand(2, 16).cuda()
|
|
|
|
out = model(x)
|
|
|
|
colo_out = torch.addmm(bias, x, weight)
|
|
|
|
assert torch.allclose(out, colo_out)
|
|
|
|
grad = torch.rand_like(out)
|
|
|
|
out.backward(grad)
|
|
|
|
colo_out.backward(grad)
|
|
|
|
check_grad_func(model, weight, bias)
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
run_with_spec(init_1d_row, check_grad_1d_row)
|
|
|
|
run_with_spec(init_1d_col, check_grad_1d_col)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_addmm_1d(world_size):
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_addmm_1d(4)
|