mirror of https://github.com/hpcaitech/ColossalAI
[tensor] hijack addmm for colo tensor (#923)
* hijack addmm for colo tensor * fix bugs * polish unit test * polish commentspull/927/head
parent
534afb018a
commit
45b9124df4
|
@ -2,4 +2,5 @@ from .linear import colo_linear
|
|||
from .element_wise import *
|
||||
from .layernorm import colo_layernorm
|
||||
from .loss import colo_cross_entropy
|
||||
from .embedding import colo_embedding
|
||||
from .embedding import colo_embedding
|
||||
from .addmm import colo_addmm
|
||||
|
|
|
@ -0,0 +1,115 @@
|
|||
import torch
|
||||
from typing import Union
|
||||
from colossalai.tensor.op_wrapper import colo_op_impl
|
||||
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, reduce_grad
|
||||
from colossalai.nn.layer.utils import divide
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ShardPattern
|
||||
from colossalai.tensor.graph import GraphOpNode, GraphGlobalEnv
|
||||
|
||||
|
||||
def colo_addmm_1Drow(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Union[int, float],
|
||||
alpha: Union[int, float]) -> ColoTensor:
|
||||
parallel_action = mat2.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow_mm)
|
||||
# mat1:S[1] x mat2:S[0] = Output:P
|
||||
# beta * input + alpha * All-Reduce(Output) = res
|
||||
|
||||
# mat1:S[1]
|
||||
if mat1.is_gathered():
|
||||
# Not splited yet.
|
||||
assert divide(mat1.shape[-1], gpc.tensor_parallel_size) == mat2.size(0), \
|
||||
'Invalid shapes in 1Drow forward: mat1={}, mat2={}. Expected last dim of input {}.'.format(
|
||||
mat1.shape, mat2.shape, mat2.size(0) * gpc.tensor_parallel_size)
|
||||
input_per_partition = split_forward_gather_backward(mat1.torch_tensor(), parallel_action.parallel_mode, dim=-1)
|
||||
elif mat1.shard_pattern == ShardPattern.Col:
|
||||
# Splited by 1Dcol
|
||||
assert mat1.shape[-1] == mat2.size(0), \
|
||||
'Invalid shapes in 1Drow forward: mat1={}, mat2={}. Expected last dim of input {}.'.format(
|
||||
mat1.shape, mat2.shape, mat2.size(0))
|
||||
input_per_partition = mat1.torch_tensor()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# Output:P
|
||||
partial_output = torch.mm(input_per_partition, mat2.torch_tensor())
|
||||
# Reduce(Output)
|
||||
output = reduce_input(partial_output, parallel_action.parallel_mode)
|
||||
# input
|
||||
assert not input_tensor.has_spec(), 'Invalid input spec for 1Drow addmm op'
|
||||
output = beta * input_tensor.torch_tensor() + alpha * output
|
||||
output = ColoTensor.init_from_torch_tensor(output)
|
||||
return output
|
||||
|
||||
|
||||
def colo_addmm_1Dcol(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Union[int, float],
|
||||
alpha: Union[int, float]) -> ColoTensor:
|
||||
# mat1:B x mat2:S[1] + input:S[1] = Output:S[1]
|
||||
# All-Gather(Output)
|
||||
# mat1:B
|
||||
parallel_action = mat2.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DCol_mm)
|
||||
if mat1.is_gathered():
|
||||
# Not splited yet.
|
||||
assert mat1.shape[-1] == mat2.size(0), \
|
||||
'Invalid shapes in 1Dcol forward: mat1={}, mat2={}. Expected last dim of input {}.'.format(
|
||||
mat1.shape, mat2.shape, mat2.size(0))
|
||||
input_parallel = reduce_grad(mat1.torch_tensor(), parallel_action.parallel_mode)
|
||||
|
||||
# input:S[1]
|
||||
assert input_tensor.has_spec() and input_tensor.shard_spec.num_action == 1 and \
|
||||
input_tensor.shard_pattern in [ShardPattern.Col, ShardPattern.Row], \
|
||||
'Invalid bias spec for 1Dcol Linear op'
|
||||
|
||||
output_parallel = torch.addmm(input_tensor.torch_tensor(),
|
||||
input_parallel,
|
||||
mat2.torch_tensor(),
|
||||
beta=beta,
|
||||
alpha=alpha)
|
||||
|
||||
output = ColoTensor.init_from_torch_tensor(output_parallel)
|
||||
out_parallel_action_list = [ParallelAction(priority=1, parallel_mode=parallel_action.parallel_mode)]
|
||||
output_spec = TensorSpec(out_parallel_action_list)
|
||||
output.set_spec(output_spec, shard=False)
|
||||
output.set_shard_pattern(ShardPattern.Col)
|
||||
if parallel_action.gather_out:
|
||||
# All-Gather(Output)
|
||||
output.gather()
|
||||
return output
|
||||
|
||||
|
||||
@colo_op_impl(torch.addmm)
|
||||
def colo_addmm(types, args, kwargs, pg):
|
||||
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
||||
This method computes a linear.
|
||||
"""
|
||||
input_tensor, mat1, mat2 = tuple(
|
||||
map(lambda t: t if isinstance(t, ColoTensor) else ColoTensor.init_from_torch_tensor(t), args[:3]))
|
||||
beta = kwargs.get('beta', 1) if kwargs else 1
|
||||
alpha = kwargs.get('alpha', 1) if kwargs else 1
|
||||
|
||||
# building the computing graph, inputs -> op
|
||||
# if GraphGlobalEnv().graph_building:
|
||||
# cur_op_node = GraphOpNode('linear', [weight, bias])
|
||||
# cur_op_node.add_prev_tensor(input_tensor)
|
||||
|
||||
# Add communication logic before and after linear call.
|
||||
ret_tensor = None
|
||||
if not mat2.has_spec(): # No Model Parallel Applied
|
||||
assert not input_tensor.has_spec(), 'Invalid input spec for native addmm op'
|
||||
ret_tensor = ColoTensor.init_from_torch_tensor(
|
||||
torch.addbmm(input_tensor.torch_tensor(), mat1.torch_tensor(), mat2.torch_tensor(), beta=beta, alpha=alpha))
|
||||
elif mat2.shard_spec.num_action == 1: # Single Model Parallel Applied
|
||||
compute_patterns = mat2.shard_spec.compute_patterns
|
||||
if ComputePattern.TP1DRow_mm in compute_patterns:
|
||||
ret_tensor = colo_addmm_1Drow(input_tensor, mat1, mat2, beta, alpha)
|
||||
elif ComputePattern.TP1DCol_mm in compute_patterns:
|
||||
ret_tensor = colo_addmm_1Dcol(input_tensor, mat1, mat2, beta, alpha)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# building the computing graph, op -> output
|
||||
# if GraphGlobalEnv().graph_building:
|
||||
# cur_op_node.add_post_tensor(ret_tensor)
|
||||
|
||||
return ret_tensor
|
|
@ -142,12 +142,15 @@ class ColoTensor(object):
|
|||
# Model Parameters
|
||||
if self._shard_spec.num_action == 1:
|
||||
parallel_action = self._shard_spec.get_action_by_compute_pattern(self._shard_spec.compute_patterns[0])
|
||||
if parallel_action.compute_pattern in [ComputePattern.TP1DRow_Linear, \
|
||||
ComputePattern.TP1DCol_Embedding]:
|
||||
if parallel_action.compute_pattern in [
|
||||
ComputePattern.TP1DRow_Linear, ComputePattern.TP1DCol_Embedding, ComputePattern.TP1DCol_mm
|
||||
]:
|
||||
self._shard_1d(parallel_action=parallel_action, dim=-1)
|
||||
self._shard_pattern = ShardPattern.Col # We bind our ComputePattern on weight, which has to be transposed when linear().
|
||||
elif parallel_action.compute_pattern in [ComputePattern.TP1DCol_Linear, \
|
||||
ComputePattern.TP1DRow_Embedding]:
|
||||
# We bind our ComputePattern on weight, which has to be transposed when linear().
|
||||
self._shard_pattern = ShardPattern.Col
|
||||
elif parallel_action.compute_pattern in [
|
||||
ComputePattern.TP1DCol_Linear, ComputePattern.TP1DRow_Embedding, ComputePattern.TP1DRow_mm
|
||||
]:
|
||||
self._shard_1d(parallel_action=parallel_action, dim=0)
|
||||
self._shard_pattern = ShardPattern.Row
|
||||
else:
|
||||
|
|
|
@ -8,8 +8,10 @@ class ComputePattern(Enum):
|
|||
TP1DCol_Linear = 2
|
||||
TP1DRow_Embedding = 3
|
||||
TP1DCol_Embedding = 4
|
||||
ZeRO = 5
|
||||
DP = 6
|
||||
TP1DRow_mm = 5
|
||||
TP1DCol_mm = 6
|
||||
ZeRO = 7
|
||||
DP = 8
|
||||
|
||||
|
||||
class ShardPattern(Enum):
|
||||
|
|
|
@ -0,0 +1,81 @@
|
|||
import colossalai
|
||||
import torch
|
||||
import pytest
|
||||
import torch.nn as nn
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.utils import ColoInitContext
|
||||
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from functools import partial
|
||||
|
||||
|
||||
class Conv1D(nn.Module):
|
||||
"""
|
||||
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
|
||||
Basically works like a linear layer but the weights are transposed.
|
||||
Args:
|
||||
nf (`int`): The number of output features.
|
||||
nx (`int`): The number of input features.
|
||||
"""
|
||||
|
||||
def __init__(self, nf, nx):
|
||||
super().__init__()
|
||||
self.nf = nf
|
||||
w = torch.empty(nx, nf)
|
||||
nn.init.normal_(w, std=0.02)
|
||||
self.weight = nn.Parameter(w)
|
||||
self.bias = nn.Parameter(torch.ones(nf))
|
||||
|
||||
def forward(self, x):
|
||||
size_out = x.size()[:-1] + (self.nf,)
|
||||
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
||||
x = x.view(size_out)
|
||||
return x
|
||||
|
||||
|
||||
def init_1d_row(model):
|
||||
spec = TensorSpec(
|
||||
[ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_mm, parallel_mode=ParallelMode.PARALLEL_1D)])
|
||||
for n, p in model.colo_named_parameters():
|
||||
if 'weight' in n:
|
||||
p.set_spec(spec)
|
||||
|
||||
|
||||
def init_1d_col(model):
|
||||
spec = TensorSpec(
|
||||
[ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_mm, parallel_mode=ParallelMode.PARALLEL_1D)])
|
||||
for n, p in model.colo_named_parameters():
|
||||
p.set_spec(spec)
|
||||
|
||||
|
||||
def run_with_spec(spec_init_func):
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = Conv1D(4, 16)
|
||||
weight = model.weight.torch_tensor().clone()
|
||||
bias = model.bias.torch_tensor().clone()
|
||||
spec_init_func(model)
|
||||
x = torch.rand(2, 16).cuda()
|
||||
out = model(x)
|
||||
assert torch.allclose(out.torch_tensor(), torch.addmm(bias, x, weight))
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_with_spec(init_1d_row)
|
||||
run_with_spec(init_1d_col)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 2, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_addmm_1d(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_addmm_1d(2)
|
Loading…
Reference in New Issue