ColossalAI/docs/source/en/features/3D_tensor_parallel.md

76 lines
3.5 KiB
Markdown
Raw Normal View History

# 3D Tensor Parallelism
Author: Zhengda Bian, Yongbin Li
**Prerequisite**
- [Define Your Configuration](../basics/define_your_config.md)
- [Configure Parallelization](../basics/configure_parallelization.md)
- [1D Tensor Parallelism](./1D_tensor_parallel.md)
- [2D Tensor Parallelism](./2D_tensor_parallel.md)
**Example Code**
- [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
**Related Paper**
- [Maximizing Parallelism in Distributed Training for Huge Neural Networks](https://arxiv.org/pdf/2105.14450.pdf)
## Introduction
The [3D tensor parallelism](https://arxiv.org/pdf/2105.14450.pdf) is an approach to parallelize the computation of neural models, hoping to obtain the optimal communication cost.
Let's still take a linear layer $Y = XA$ as an example.
Given $P=q \times q \times q$ processors (necessary condition), e.g. $q=2$, we split the input $X$ and weight $A$ into
$$
\left[\begin{matrix}
X_{000} & X_{001} \\
X_{010} & X_{011} \\
X_{100} & X_{101} \\
X_{110} & X_{111} \end{matrix}
\right]
\text{~and~}
\left[\begin{matrix}
A_{000} & A_{001} & A_{010} & A_{011} \\
A_{100} & A_{101} & A_{110} & A_{111} \end{matrix}
\right]
\text{~respectively,}$$
where each $X_{ijl}$ and $A_{lji}$ are stored at processor $(i,j,l)$, as shown in the figure below.
<center>
<img src="https://s2.loli.net/2022/02/17/JevO6SED5z4PFdp.png" width = "200" height = "250" />
<img src="https://s2.loli.net/2022/02/17/qvtwjdfNXMAb4nF.png" width = "200" height = "250" />
<img src="https://s2.loli.net/2022/02/17/WFzm2N4IwKf1jXZ.png" width = "200" height = "250" />
<img src="https://s2.loli.net/2022/02/17/r2dZQ4hKxwTuIv6.png" width = "200" height = "250" />
</center>
Then we all-gather $X_{ijl}$ across $(i, 0...q,l)$, as well as $A_{lji}$ across $(0...q, j, l)$.
So, we have $X_{il}$ and $A_{lj}$ on each processor $(i,j,l)$ to get $X_{il}A_{lj}$.
Finally, we reduce-scatter the results across $(i, j, 0...q)$ to get $Y_{ijl}$, which forms
$$
Y=
\left[\begin{matrix}
Y_{000} & Y_{001} \\
Y_{010} & Y_{011} \\
Y_{100} & Y_{101} \\
Y_{110} & Y_{111} \end{matrix}
\right].
$$
We also need to note that in the backward pass, we need to all-gather the gradient $\dot{Y_{ijl}}$, and then reduce-scatter the gradient $\dot{X_{il}}=\dot{Y_{ij}}A_{lj}^T$ and $\dot{A_{lj}}=X_{il}^T\dot{Y_{ij}}$.
## Efficiency
Given $P=q \times q \times q$ processors, we present the theoretical computation and memory cost, as well as the communication cost based on the ring algorithm in both the forward and backward pass of 3D tensor parallelism.
| Computation | Memory (parameters) | Memory (activations) | Communication (bandwidth) | Communication (latency) |
| :-: | :-: | :-: | :-: | :-: |
| $O(1/q^3)$ | $O(1/q^3)$ | $O(1/q^3)$ | $O(6(q-1)/q^3)$ | $O(6(q-1))$ |
## Usage
Currently the newest version of ColossalAI doesn't support 3D tensor parallelism, but this feature will be integrated into `Shardformer` in future releases.
For more details about ideas and usages of `Shardformer`, please refer to [Shardformer Doc](./shardformer.md).
For users of older version of ColossalAI, please refer to [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md).
<!-- doc-test-command: echo -->