2023-03-28 12:25:36 +00:00
|
|
|
from typing import Optional
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
from transformers import LlamaConfig, LlamaForCausalLM
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
from ..base import Actor
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaActor(Actor):
|
|
|
|
"""
|
|
|
|
Llama Actor model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pretrained (str): Pretrained model name or path.
|
|
|
|
config (LlamaConfig): Model config.
|
|
|
|
checkpoint (bool): Enable gradient checkpointing.
|
|
|
|
lora_rank (int): LoRA rank.
|
|
|
|
lora_train_bias (str): LoRA bias training mode.
|
|
|
|
"""
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
pretrained: Optional[str] = None,
|
|
|
|
config: Optional[LlamaConfig] = None,
|
|
|
|
checkpoint: bool = False,
|
|
|
|
lora_rank: int = 0,
|
|
|
|
lora_train_bias: str = "none",
|
|
|
|
) -> None:
|
2023-03-28 12:25:36 +00:00
|
|
|
if pretrained is not None:
|
|
|
|
model = LlamaForCausalLM.from_pretrained(pretrained)
|
|
|
|
elif config is not None:
|
|
|
|
model = LlamaForCausalLM(config)
|
|
|
|
else:
|
|
|
|
model = LlamaForCausalLM(LlamaConfig())
|
|
|
|
|
|
|
|
if checkpoint:
|
|
|
|
model.gradient_checkpointing_enable()
|
|
|
|
|
|
|
|
super().__init__(model, lora_rank, lora_train_bias)
|