You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalMoE/infer.py

111 lines
3.6 KiB

import argparse
import torch
import torch.distributed as dist
from colossal_moe.models.mixtral_checkpoint import MixtralMoEHybridParallelCheckpointIO
from colossal_moe.models.mixtral_policy import MixtralForCausalLMPolicy
from transformers import AutoTokenizer
from transformers.models.mixtral import MixtralConfig, MixtralForCausalLM
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.cluster import DistCoordinator
def parse_args():
# basic settings
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="mistralai/Mixtral-8x7B-v0.1",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--plugin",
type=str,
default="ep",
choices=["ep"],
help="Parallel methos.",
)
parser.add_argument(
"--precision",
type=str,
default="bf16",
choices=["fp32", "bf16", "fp16"],
help="The mixed precision training.",
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
# kernel
parser.add_argument(
"--use_kernel",
action="store_true",
help="Use kernel optim. Need to install flash attention and triton to enable all kernel optimizations. Skip if not installed.",
)
parser.add_argument(
"--use_layernorm_kernel",
action="store_true",
help="Use layernorm kernel. Need to install apex. Raise error if not installed.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
coordinator = DistCoordinator()
config = MixtralConfig.from_pretrained(args.model_name)
ep_size = min(dist.get_world_size(), config.num_local_experts)
# Set plugin
if args.plugin == "ep":
plugin = MoeHybridParallelPlugin(
tp_size=1,
pp_size=1,
ep_size=ep_size,
zero_stage=1,
precision=args.precision,
custom_policy=MixtralForCausalLMPolicy(),
checkpoint_io=MixtralMoEHybridParallelCheckpointIO,
enable_fused_normalization=args.use_layernorm_kernel,
enable_jit_fused=args.use_kernel,
)
else:
raise ValueError(f"Invalid plugin {args.plugin}")
coordinator.print_on_master(f"Set plugin as {plugin.__class__.__name__}")
# Build mixtral model
model = MixtralForCausalLM.from_pretrained(args.model_name)
coordinator.print_on_master(f"Finish load model")
# Prepare tokenizer and dataloader
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
# Set booster
booster = Booster(plugin=plugin)
model, _, _, _, _ = booster.boost(model=model)
coordinator.print_on_master(f"Finish init booster")
model.eval()
if coordinator.rank == 0:
text = ["Hello my name is"]
else:
text = ["What's the largest country in the world?", "How many people live in China?", "帮我续写这首诗:离离原上草"]
tokenizer.pad_token = tokenizer.unk_token
inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch.cuda.current_device())
with torch.no_grad():
outputs = model.module.generate(**inputs, max_new_tokens=20)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(f"[{coordinator.rank}] {outputs}")
if __name__ == "__main__":
main()