[moe] update capacity computing (#5253)

* [moe] top2 allow uneven input

* [moe] update capacity computing

* [moe] remove debug info

* [moe] update capacity computing

* [moe] update capacity computing
pull/5372/head
Hongxin Liu 2024-01-11 16:09:38 +08:00 committed by ver217
parent 7d8e0338a4
commit c904d2ae99
2 changed files with 16 additions and 7 deletions

View File

@ -126,12 +126,15 @@ def main():
load_model(args.model_name, model, booster)
coordinator.print_on_master(f"Finish load ckpt")
text = ["Hello my name is", "1+1=?"]
if coordinator.rank == 0:
text = ["Hello my name is"]
else:
text = ["What's the largest country in the world?", "How many people live in China?", "帮我续写这首诗:离离原上草"]
tokenizer.pad_token = tokenizer.unk_token
inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch.cuda.current_device())
outputs = model.module.generate(**inputs, max_new_tokens=20)
outputs = tokenizer.batch_decode(outputs)[0]
print(outputs)
outputs = tokenizer.batch_decode(outputs)
print(f"[{coordinator.rank}] {outputs}")
if __name__ == "__main__":

View File

@ -45,9 +45,13 @@ class MoeRouter(nn.Module, ABC):
self._z_loss = None
self.use_kernel = use_kernel
def get_capacity(self, logits_shape):
def get_capacity(self, num_tokens, num_experts, ep_group=None):
if ep_group is not None:
num_tokens_tensor = torch.tensor(num_tokens, device=get_current_device())
dist.all_reduce(num_tokens_tensor, group=ep_group)
num_tokens = num_tokens_tensor.item() // dist.get_world_size(ep_group)
capacity_factor = self.capacity_factor_train if self.training else self.capacity_factor_eval
capacity = math.floor(self.k_value * capacity_factor * logits_shape[-2] / logits_shape[-1])
capacity = math.floor(self.k_value * capacity_factor * num_tokens / num_experts)
capacity += capacity % 2
capacity = max(capacity, self.min_capacity)
assert capacity > 0
@ -175,7 +179,8 @@ class Top1Router(MoeRouter):
assert inputs.dtype == torch.float
probs = F.softmax(inputs, dim=-1)
num_experts = probs.size(-1)
capacity = self.get_capacity(inputs.shape)
num_tokens = inputs.size(0)
capacity = self.get_capacity(num_tokens, num_experts, ep_group)
top1_idx = torch.argmax(inputs, dim=-1)
mask = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
@ -276,7 +281,8 @@ class Top2Router(MoeRouter):
probs = probs / routing_weights.sum(dim=-1, keepdim=True)
num_experts = probs.size(-1)
capacity = self.get_capacity(inputs.shape)
num_tokens = inputs.size(0)
capacity = self.get_capacity(num_tokens, num_experts, ep_group)
top1_idx = torch.argmax(probs, dim=-1)
mask1 = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)