import os
from datetime import datetime
from typing import List
from setuptools import find_packages , setup
from op_builder . utils import (
check_cuda_availability ,
check_pytorch_version ,
check_system_pytorch_cuda_match ,
get_cuda_bare_metal_version ,
get_pytorch_version ,
set_cuda_arch_list ,
)
try :
import torch
from torch . utils . cpp_extension import CUDA_HOME , BuildExtension
TORCH_AVAILABLE = True
except ImportError :
TORCH_AVAILABLE = False
CUDA_HOME = None
# Some constants for installation checks
MIN_PYTORCH_VERSION_MAJOR = 1
MIN_PYTORCH_VERSION_MINOR = 10
THIS_DIR = os . path . dirname ( os . path . abspath ( __file__ ) )
BUILD_CUDA_EXT = int ( os . environ . get ( ' CUDA_EXT ' , ' 0 ' ) ) == 1
IS_NIGHTLY = int ( os . environ . get ( ' NIGHTLY ' , ' 0 ' ) ) == 1
# a variable to store the op builder
ext_modules = [ ]
# check for CUDA extension dependencies
def environment_check_for_cuda_extension_build ( ) :
if not TORCH_AVAILABLE :
raise ModuleNotFoundError (
" [extension] PyTorch is not found while CUDA_EXT=1. You need to install PyTorch first in order to build CUDA extensions "
)
if not CUDA_HOME :
raise RuntimeError (
" [extension] CUDA_HOME is not found while CUDA_EXT=1. You need to export CUDA_HOME environment vairable or install CUDA Toolkit first in order to build CUDA extensions "
)
check_system_pytorch_cuda_match ( CUDA_HOME )
check_pytorch_version ( MIN_PYTORCH_VERSION_MAJOR , MIN_PYTORCH_VERSION_MINOR )
check_cuda_availability ( )
def fetch_requirements ( path ) - > List [ str ] :
"""
This function reads the requirements file .
Args :
path ( str ) : the path to the requirements file .
Returns :
The lines in the requirements file .
"""
with open ( path , ' r ' ) as fd :
return [ r . strip ( ) for r in fd . readlines ( ) ]
def fetch_readme ( ) - > str :
"""
This function reads the README . md file in the current directory .
Returns :
The lines in the README file .
"""
with open ( ' README.md ' , encoding = ' utf-8 ' ) as f :
return f . read ( )
def get_version ( ) - > str :
"""
This function reads the version . txt and generates the colossalai / version . py file .
Returns :
The library version stored in version . txt .
"""
setup_file_path = os . path . abspath ( __file__ )
project_path = os . path . dirname ( setup_file_path )
version_txt_path = os . path . join ( project_path , ' version.txt ' )
version_py_path = os . path . join ( project_path , ' colossalai/version.py ' )
with open ( version_txt_path ) as f :
version = f . read ( ) . strip ( )
# write version into version.py
with open ( version_py_path , ' w ' ) as f :
f . write ( f " __version__ = ' { version } ' \n " )
# look for pytorch and cuda version
if BUILD_CUDA_EXT :
torch_major , torch_minor , _ = get_pytorch_version ( )
torch_version = f ' { torch_major } . { torch_minor } '
cuda_version = ' . ' . join ( get_cuda_bare_metal_version ( CUDA_HOME ) )
else :
torch_version = None
cuda_version = None
# write the version into the python file
if torch_version :
f . write ( f ' torch = " { torch_version } " \n ' )
else :
f . write ( ' torch = None \n ' )
if cuda_version :
f . write ( f ' cuda = " { cuda_version } " \n ' )
else :
f . write ( ' cuda = None \n ' )
return version
if BUILD_CUDA_EXT :
environment_check_for_cuda_extension_build ( )
set_cuda_arch_list ( CUDA_HOME )
from op_builder import ALL_OPS
op_names = [ ]
# load all builders
for name , builder_cls in ALL_OPS . items ( ) :
op_names . append ( name )
ext_modules . append ( builder_cls ( ) . builder ( ) )
# show log
op_name_list = ' , ' . join ( op_names )
print ( f " [extension] loaded builders for { op_name_list } " )
# always put not nightly branch as the if branch
# otherwise github will treat colossalai-nightly as the project name
# and it will mess up with the dependency graph insights
if not IS_NIGHTLY :
version = get_version ( )
package_name = ' colossalai '
else :
# use date as the nightly version
version = datetime . today ( ) . strftime ( ' % Y. % m. %d ' )
package_name = ' colossalai-nightly '
setup ( name = package_name ,
version = version ,
packages = find_packages ( exclude = (
' benchmark ' ,
' docker ' ,
' tests ' ,
' docs ' ,
' examples ' ,
' tests ' ,
' scripts ' ,
' requirements ' ,
' *.egg-info ' ,
) ) ,
description = ' An integrated large-scale model training system with efficient parallelization techniques ' ,
long_description = fetch_readme ( ) ,
long_description_content_type = ' text/markdown ' ,
license = ' Apache Software License 2.0 ' ,
url = ' https://www.colossalai.org ' ,
project_urls = {
' Forum ' : ' https://github.com/hpcaitech/ColossalAI/discussions ' ,
' Bug Tracker ' : ' https://github.com/hpcaitech/ColossalAI/issues ' ,
' Examples ' : ' https://github.com/hpcaitech/ColossalAI-Examples ' ,
' Documentation ' : ' http://colossalai.readthedocs.io ' ,
' Github ' : ' https://github.com/hpcaitech/ColossalAI ' ,
} ,
ext_modules = ext_modules ,
cmdclass = { ' build_ext ' : BuildExtension } if ext_modules else { } ,
install_requires = fetch_requirements ( ' requirements/requirements.txt ' ) ,
entry_points = '''
[ console_scripts ]
colossalai = colossalai . cli : cli
''' ,
python_requires = ' >=3.6 ' ,
classifiers = [
' Programming Language :: Python :: 3 ' ,
' License :: OSI Approved :: Apache Software License ' ,
' Environment :: GPU :: NVIDIA CUDA ' ,
' Topic :: Scientific/Engineering :: Artificial Intelligence ' ,
' Topic :: System :: Distributed Computing ' ,
] ,
package_data = {
' colossalai ' : [
' _C/*.pyi ' , ' kernel/cuda_native/csrc/* ' , ' kernel/cuda_native/csrc/kernel/* ' ,
' kernel/cuda_native/csrc/kernels/include/* '
]
} )