[builder] MOE builder (#2277)

pull/2295/head
Jiarui Fang 2023-01-03 20:29:39 +08:00 committed by GitHub
parent 26e171af6c
commit 16cc8e6aa7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 60 additions and 20 deletions

View File

@ -24,7 +24,19 @@ except ImportError:
from colossalai.kernel.op_builder import ScaledSoftmaxBuilder
scaled_upper_triang_masked_softmax = ScaledSoftmaxBuilder().load()
try:
from colossalai._C import moe
except ImportError:
from colossalai.kernel.op_builder import MOEBuilder
moe = MOEBuilder().load()
__all__ = [
"fused_optim", "cpu_optim", "multihead_attention", "LayerNorm", "FusedScaleMaskSoftmax", "MultiHeadAttention",
"scaled_upper_triang_masked_softmax"
"fused_optim",
"cpu_optim",
"multihead_attention",
"moe",
"LayerNorm",
"FusedScaleMaskSoftmax",
"MultiHeadAttention",
"scaled_upper_triang_masked_softmax",
]

View File

@ -1,6 +1,7 @@
from .cpu_adam import CPUAdamBuilder
from .fused_optim import FusedOptimBuilder
from .moe import MOEBuilder
from .multi_head_attn import MultiHeadAttnBuilder
from .scaled_upper_triang_masked_softmax import ScaledSoftmaxBuilder
__all__ = ['CPUAdamBuilder', 'FusedOptimBuilder', 'MultiHeadAttnBuilder', 'ScaledSoftmaxBuilder']
__all__ = ['CPUAdamBuilder', 'FusedOptimBuilder', 'MultiHeadAttnBuilder', 'ScaledSoftmaxBuilder', 'MOEBuilder']

View File

@ -1,12 +1,12 @@
import os
import re
import sys
from pathlib import Path
from typing import List
import torch
def get_cuda_cc_flag():
def get_cuda_cc_flag() -> List:
"""get_cuda_cc_flag
cc flag for your GPU arch

View File

@ -0,0 +1,33 @@
import os
from .builder import Builder, get_cuda_cc_flag
class MOEBuilder(Builder):
def __init__(self):
self.base_dir = "cuda_native/csrc"
self.name = 'moe'
super().__init__()
def include_dirs(self):
ret = []
ret = [os.path.join(self.base_dir, "includes"), self.get_cuda_home_include()]
ret.append(os.path.join(self.base_dir, "kernels", "include"))
return [self.colossalai_src_path(path) for path in ret]
def sources_files(self):
ret = [os.path.join(self.base_dir, fname) for fname in ['moe_cuda.cpp', 'moe_cuda_kernel.cu']]
return [self.colossalai_src_path(path) for path in ret]
def cxx_flags(self):
return ['-O3', '-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5']
def nvcc_flags(self):
extra_cuda_flags = [
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr',
'--expt-extended-lambda'
]
extra_cuda_flags.extend(get_cuda_cc_flag())
ret = ['-O3', '--use_fast_math'] + extra_cuda_flags
return ret

View File

@ -6,12 +6,7 @@ from torch import Tensor
from torch.distributed import ProcessGroup
COL_MOE_KERNEL_FLAG = False
try:
import colossalai._C.moe
COL_MOE_KERNEL_FLAG = True
except ImportError:
print("If you want to activate cuda mode for MoE, please install with cuda_ext!")
from colossalai.kernel import moe
class AllGather(torch.autograd.Function):
@ -90,7 +85,7 @@ class MoeDispatch(torch.autograd.Function):
s = tokens.size(0)
h = tokens.size(1)
expert_input = colossalai._C.moe.dispatch_forward(s, ec, h, tokens, mask, dest_idx)
expert_input = moe.dispatch_forward(s, ec, h, tokens, mask, dest_idx)
ctx.save_for_backward(mask, dest_idx)
ctx.s = s
@ -102,7 +97,7 @@ class MoeDispatch(torch.autograd.Function):
@staticmethod
def backward(ctx, output_grad):
mask, dest_idx = ctx.saved_tensors
d_tokens = colossalai._C.moe.dispatch_backward(ctx.s, ctx.ec, ctx.h, output_grad, mask, dest_idx)
d_tokens = moe.dispatch_backward(ctx.s, ctx.ec, ctx.h, output_grad, mask, dest_idx)
return d_tokens, None, None, None
@ -119,7 +114,7 @@ class MoeCombine(torch.autograd.Function):
fp16_flag = (expert_tokens.dtype == torch.float16)
cb_input = expert_tokens.to(torch.float32) if fp16_flag else expert_tokens
ctokens = colossalai._C.moe.combine_forward(s, e, c, h, cb_input, logits, mask, dest_idx)
ctokens = moe.combine_forward(s, e, c, h, cb_input, logits, mask, dest_idx)
output = ctokens.to(torch.float16) if fp16_flag else ctokens
ctx.save_for_backward(expert_tokens, logits, mask, dest_idx)
@ -138,8 +133,7 @@ class MoeCombine(torch.autograd.Function):
cb_grad = tokens_grad.to(torch.float32) if tokens_grad.dtype is torch.float16 \
else tokens_grad
cb_input = expert_tokens.to(torch.float32) if ctx.fp16_flag else expert_tokens
d_expert, d_logits = colossalai._C.moe.combine_backward(ctx.s, ctx.e, ctx.c, ctx.h, cb_grad, cb_input, logits,
mask, dest_idx)
d_expert, d_logits = moe.combine_backward(ctx.s, ctx.e, ctx.c, ctx.h, cb_grad, cb_input, logits, mask, dest_idx)
d_expert = d_expert.to(torch.float16) if ctx.fp16_flag else d_expert
return d_expert, d_logits, None, None, None
@ -149,6 +143,6 @@ def moe_cumsum(inputs: Tensor):
dim0 = inputs.size(0)
flag = (dim0 <= 1024) or (dim0 <= 2048 and dim0 % 2 == 0) or (dim0 % 4 == 0)
if flag and COL_MOE_KERNEL_FLAG:
return colossalai._C.moe.cumsum_sub_one(inputs)
return moe.cumsum_sub_one(inputs)
else:
return torch.cumsum(inputs, dim=0) - 1

View File

@ -1,7 +1,7 @@
import os
import re
from setuptools import Extension, find_packages, setup
from setuptools import find_packages, setup
from colossalai.kernel.op_builder.utils import get_cuda_bare_metal_version
@ -161,8 +161,8 @@ if build_cuda_ext:
cuda_ext_helper('colossalai._C.scaled_masked_softmax',
['scaled_masked_softmax.cpp', 'scaled_masked_softmax_cuda.cu'], extra_cuda_flags + cc_flag))
ext_modules.append(
cuda_ext_helper('colossalai._C.moe', ['moe_cuda.cpp', 'moe_cuda_kernel.cu'], extra_cuda_flags + cc_flag))
from colossalai.kernel.op_builder import MOEBuilder
ext_modules.append(MOEBuilder().builder('colossalai._C.moe'))
extra_cuda_flags = ['-maxrregcount=50']