|
|
|
import random
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch.multiprocessing import Manager
|
|
|
|
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
|
|
|
|
from colossalai.inference.core.engine import InferenceEngine
|
|
|
|
from colossalai.inference.modeling.models.glide_llama import GlideLlamaConfig, GlideLlamaForCausalLM
|
|
|
|
from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy
|
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
|
|
|
|
|
|
|
|
def setup_seed(seed):
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
torch.random.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
random.seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
def check_inference_engine(use_engine=False, prompt_template=None, do_sample=True, policy=None):
|
|
|
|
setup_seed(20)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
|
|
|
model = LlamaForCausalLM(
|
|
|
|
LlamaConfig(
|
|
|
|
vocab_size=50000,
|
|
|
|
hidden_size=512,
|
|
|
|
intermediate_size=1536,
|
|
|
|
num_attention_heads=4,
|
|
|
|
num_key_value_heads=2,
|
|
|
|
num_hidden_layers=16,
|
|
|
|
)
|
|
|
|
).cuda()
|
|
|
|
model = model.eval()
|
|
|
|
inputs = [
|
|
|
|
"介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,",
|
|
|
|
"介绍一下武汉,",
|
|
|
|
]
|
|
|
|
|
|
|
|
output_len = 38
|
|
|
|
do_sample = do_sample
|
|
|
|
top_p = 0.5
|
|
|
|
top_k = 50
|
|
|
|
|
|
|
|
if use_engine:
|
|
|
|
inference_config = InferenceConfig(
|
|
|
|
max_output_len=output_len,
|
|
|
|
prompt_template=prompt_template,
|
|
|
|
dtype="fp32",
|
|
|
|
use_cuda_kernel=True,
|
|
|
|
tp_size=dist.get_world_size(),
|
|
|
|
)
|
|
|
|
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy)
|
|
|
|
assert inference_engine.generation_config.max_new_tokens == output_len
|
|
|
|
inference_engine.add_request(prompts=inputs)
|
|
|
|
assert inference_engine.request_handler._has_waiting()
|
|
|
|
generation_config = GenerationConfig(
|
|
|
|
max_new_tokens=output_len, do_sample=do_sample, dtype="fp32", top_p=top_p, top_k=top_k
|
|
|
|
)
|
|
|
|
outputs = inference_engine.generate(generation_config=generation_config)
|
|
|
|
else:
|
|
|
|
if prompt_template:
|
|
|
|
# apply prompt template
|
|
|
|
inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs]
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
|
|
|
|
inputs = inputs.cuda()
|
|
|
|
generation_config = GenerationConfig(
|
|
|
|
do_sample=do_sample,
|
|
|
|
dtype="fp32",
|
|
|
|
top_p=top_p,
|
|
|
|
top_k=top_k,
|
|
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
|
|
max_new_tokens=output_len,
|
|
|
|
)
|
|
|
|
outputs = model.generate(inputs, generation_config=generation_config)
|
|
|
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
def run_engine(world_size, **kwargs):
|
|
|
|
manager = Manager()
|
|
|
|
result_list = manager.list([-1] * world_size) # Create a shared list
|
|
|
|
|
|
|
|
spawn(run_dist, world_size, func_to_run=check_inference_engine, ret=result_list, **kwargs)
|
|
|
|
return result_list[0]
|
|
|
|
|
|
|
|
|
|
|
|
def check_spec_dec(num_layers, max_length):
|
|
|
|
torch.manual_seed(123)
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
|
|
|
# Dummy configs for testing
|
|
|
|
toy_config = LlamaConfig(num_hidden_layers=num_layers)
|
|
|
|
toy_config.pad_token_id = tokenizer.eos_token_id
|
|
|
|
drafter_model = LlamaForCausalLM(toy_config)
|
|
|
|
drafter_model = drafter_model.eval().cuda()
|
|
|
|
large_config = LlamaConfig(
|
|
|
|
hidden_size=4096,
|
|
|
|
intermediate_size=11008,
|
|
|
|
num_attention_heads=32,
|
|
|
|
num_hidden_layers=8,
|
|
|
|
num_key_value_heads=32,
|
|
|
|
max_position_embeddings=2048,
|
|
|
|
)
|
|
|
|
large_config.pad_token_id = tokenizer.eos_token_id
|
|
|
|
main_model = LlamaForCausalLM(large_config)
|
|
|
|
|
|
|
|
inference_config = InferenceConfig(
|
|
|
|
dtype="fp16",
|
|
|
|
micro_batch_size=1,
|
|
|
|
max_batch_size=1,
|
|
|
|
max_input_len=128,
|
|
|
|
max_output_len=128,
|
|
|
|
prefill_ratio=1.2,
|
|
|
|
block_size=16,
|
|
|
|
)
|
|
|
|
engine = InferenceEngine(main_model, tokenizer, inference_config)
|
|
|
|
engine.enable_spec_dec(drafter_model, n_spec_tokens=5)
|
|
|
|
|
|
|
|
dummy_inputs = torch.randint(low=5, high=1000, size=(1, 10), dtype=torch.long, device="cuda")
|
|
|
|
generation_config = GenerationConfig(
|
|
|
|
pad_token_id=tokenizer.eos_token_id,
|
|
|
|
max_length=max_length,
|
|
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
|
|
)
|
|
|
|
out, out_token_ids = engine.generate(
|
|
|
|
prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True
|
|
|
|
)
|
|
|
|
engine.disable_spec_dec()
|
|
|
|
engine.clear_spec_dec()
|
|
|
|
|
|
|
|
assert not engine.use_spec_dec
|
|
|
|
assert engine.drafter is None and engine.drafter_model is None
|
|
|
|
|
|
|
|
max_new_tokens = max_length - dummy_inputs.size(1)
|
|
|
|
assert len(out) == 1
|
|
|
|
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens
|
|
|
|
|
|
|
|
# test GLIDE model
|
|
|
|
glide_config = GlideLlamaConfig(
|
|
|
|
intermediate_size=8192,
|
|
|
|
large_hidden_size=4096,
|
|
|
|
large_num_attention_heads=32,
|
|
|
|
num_hidden_layers=num_layers,
|
|
|
|
)
|
|
|
|
glide_model = GlideLlamaForCausalLM(glide_config)
|
|
|
|
engine.enable_spec_dec(glide_model, use_glide_drafter=True)
|
|
|
|
|
|
|
|
out, out_token_ids = engine.generate(
|
|
|
|
prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True
|
|
|
|
)
|
|
|
|
engine.clear_spec_dec()
|
|
|
|
|
|
|
|
assert len(out) == 1
|
|
|
|
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
|
|
|
|
|
|
|
|
if ret:
|
|
|
|
ret[rank] = func_to_run(**kwargs)
|
|
|
|
else:
|
|
|
|
func_to_run(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.largedist
|
|
|
|
@parameterize("prompt_template", [None, "llama"])
|
|
|
|
@parameterize("do_sample", [False])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_tp_engine(prompt_template, do_sample):
|
|
|
|
kwargs1 = {
|
|
|
|
"use_engine": True,
|
|
|
|
"prompt_template": prompt_template,
|
|
|
|
"do_sample": do_sample,
|
|
|
|
"policy": NoPaddingLlamaModelInferPolicy(),
|
|
|
|
}
|
|
|
|
|
|
|
|
kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None}
|
|
|
|
|
|
|
|
colossal_tp_1_output = run_engine(1, **kwargs1)
|
|
|
|
colossal_tp_2_output = run_engine(2, **kwargs1)
|
|
|
|
transformer_tp_1_output = run_engine(1, **kwargs2)
|
|
|
|
|
|
|
|
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output):
|
|
|
|
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}"
|
|
|
|
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}"
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.largedist
|
|
|
|
@parameterize("num_layers", [1])
|
|
|
|
@parameterize("max_length", [64])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_spec_dec(num_layers, max_length):
|
|
|
|
spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_tp_engine()
|
|
|
|
test_spec_dec()
|