[Inference] User Experience: update the logic of default tokenizer and generation config. (#5337)

* add

* fix

* fix

* pause

* fix

* fix pytest

* align

* fix

* license

* fix

* fix

* fix readme

* fix some bugs

* remove tokenizer config
pull/5376/head
Jianghai 2024-02-07 17:55:48 +08:00 committed by GitHub
parent 6fb4bcbb24
commit 1f8c7e7046
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 62 additions and 23 deletions

View File

@ -86,7 +86,7 @@ colossalai.launch_from_torch(config={})
# Step 1: create a model in "transformers" way
model_path = "lmsys/vicuna-7b-v1.3"
model = transformers.LlamaForCausalLM.from_pretrained(model_path).cuda()
tokenizer = transformers.LlamaTokenizer.from_pretrained(model_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
# Step 2: create an inference_config
inference_config = InferenceConfig(
@ -100,13 +100,8 @@ inference_config = InferenceConfig(
engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
# Step 4: try inference
generation_config = transformers.GenerationConfig(
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=512,
)
prompts = ['Who is the best player in the history of NBA?']
engine.add_request(prompts=prompts)
response = engine.generate(generation_config)
response = engine.generate(prompts)
pprint(response)
```
@ -150,13 +145,16 @@ Notations:
- [x] Paged Attention
- [x] High-Performance Kernels
- [x] Llama Modelling
- [x] User Documentation
- [ ] Speculative Decoding
- [ ] Tensor Parallelism
- [ ] Beam Search
- [ ] Speculative Decoding
- [ ] Early stopping
- [ ] Logger system
- [ ] SplitFuse
- [ ] Continuous Batching
- [ ] Online Inference
- [ ] Benchmarking
- [ ] User Documentation
## 🌟 Acknowledgement

View File

@ -8,6 +8,7 @@ from typing import Optional, Union
import torch
import torch.distributed as dist
from transformers.generation import GenerationConfig
GibiByte = 1024**3
@ -60,15 +61,22 @@ class InferenceConfig:
max_input_len: int = 256
block_size: int = 16
dtype: Union[str, torch.dtype] = torch.float16 # use fp16 by default
tp_size: int = 1
pp_size: int = 1
# TODO: beam search is not support for now
do_sample: bool = False
beam_width: int = 1
# the ratio of prefill sequences to decoding sequences, we do prefill step once the actual value exceeds ratio
prefill_ratio: Optional[float] = 1.2
pad_input: bool = False
quant_mode: Optional[str] = None
revision: Optional[str] = None
early_stopping: Optional[bool] = False
top_k: Optional[int] = None
top_p: Optional[float] = None
min_p: Optional[float] = None
prompt_template: Optional[str] = None
def __post_init__(self):
@ -93,7 +101,6 @@ class InferenceConfig:
assert (
self.tp_size * self.pp_size == dist.get_world_size()
), f"TP size({self.tp_size}) * PP size({self.pp_size}) should be equal to the global world size ({dist.get_world_size()})"
# check prompt template
if self.prompt_template is None:
return
@ -105,3 +112,20 @@ class InferenceConfig:
assert (
"{input_text}" in self.prompt_template
), "The prompt template should contain '{input_text}' for formatting the input text. For example: 'USER: {input_text}\n\nASSISTANT: '"
def to_generation_config(self, model_config) -> GenerationConfig:
meta_config = {
"max_length": self.max_input_len + self.max_output_len,
"max_new_tokens": self.max_output_len,
"early_stopping": self.early_stopping,
"do_sample": self.do_sample,
"num_beams": self.beam_width,
}
for type in ["top_k", "top_p", "min_p"]:
if hasattr(self, type):
meta_config[type] = getattr(self, type)
for type in ["pad_token_id", "bos_token_id", "eos_token_id"]:
if hasattr(model_config, type):
meta_config[type] = getattr(model_config, type)
return GenerationConfig.from_dict(meta_config)

View File

@ -33,7 +33,7 @@ class InferenceEngine:
Args:
model (nn.Module): Path or nn.Module of this model.
tokenizer (Union[PreTrainedTokenizer, PreTrainedTokenizerFast]): Path of the tokenizer to use.
tokenizer Optional[(Union[PreTrainedTokenizer, PreTrainedTokenizerFast])]: Path of the tokenizer to use.
inference_config (Optional[InferenceConfig], optional): Store the configuration information related to inference.
verbose (bool): Determine whether or not to log the generation process.
model_policy ("Policy"): the policy to shardformer model. It will be determined by the model type if not provided.
@ -42,19 +42,20 @@ class InferenceEngine:
def __init__(
self,
model: nn.Module,
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
inference_config: Optional["InferenceConfig"] = None,
tokenizer: [Union[PreTrainedTokenizer, PreTrainedTokenizerFast]],
inference_config: InferenceConfig,
verbose: bool = False,
model_policy: Policy = None,
) -> None:
assert inference_config, "Please provide inference_config."
self.tokenizer = tokenizer
self.tokenizer.pad_token = self.tokenizer.eos_token
assert tokenizer, "Please provide a tokenizer, either a defined one or str"
self.inference_config = inference_config
self.model_config = model.config
self.device = torch.device("cuda")
self.dtype = inference_config.dtype
self.tokenizer = tokenizer
self.tokenizer.pad_token = self.tokenizer.eos_token
self.generation_config = inference_config.to_generation_config(self.model_config)
model = model.eval()
model.to(self.dtype)
@ -80,6 +81,8 @@ class InferenceEngine:
self.request_handler = RequestHandler(self.inference_config, self.model_config)
self.k_cahce, self.v_cache = self.request_handler.get_kvcache()
# DISCUSS maybe move this into batch info?
self.counter = count()
def _verify_config(self) -> None:
@ -137,7 +140,7 @@ class InferenceEngine:
self,
prompts: List[str] = None,
prompts_token_ids: Union[List[int], torch.Tensor, np.ndarray] = None,
generation_config: GenerationConfig = None,
generation_config: Optional[GenerationConfig] = None,
) -> List[str]:
"""
Executing the inference step.
@ -158,6 +161,10 @@ class InferenceEngine:
output_seqs_list = []
output_tokens_list = []
# intuition: If user provide a generation config, we should replace the existing one.
if generation_config is not None:
self.generation_config = generation_config
while self.request_handler.check_unfinished_seqs():
output_seqs_list += self.step()
@ -285,8 +292,8 @@ class InferenceEngine:
if self.inference_config.pad_input:
logits = logits[:, -1, :]
self.request_handler.search_tokens(self.generation_config, logits)
finished_sequences = self.request_handler.update()
return finished_sequences

View File

@ -2,6 +2,7 @@ from typing import List
import torch
from transformers.configuration_utils import PretrainedConfig
from transformers.generation import GenerationConfig
from colossalai.inference.config import InferenceConfig
from colossalai.inference.flash_decoding_utils import FDIntermTensors
@ -94,6 +95,10 @@ class RequestHandler:
head_dim = model_config.hidden_size // model_config.num_attention_heads
fd_inter_tensor = FDIntermTensors()
if fd_inter_tensor._tensors_initialized:
fd_inter_tensor._reset()
fd_inter_tensor.initialize(
max_batch_size=self.max_batch_size,
num_attn_heads=model_config.num_attention_heads,
@ -170,6 +175,7 @@ class RequestHandler:
self.cache_manager.allocate_context_from_block_table(seq.block_table, seq.sentence_len)
for seq in remove_list:
lst.remove(seq)
if self.running_list.ready_for_prefill():
for seq in self.running_list.prefill:
seq.mark_running()
@ -229,7 +235,7 @@ class RequestHandler:
return None
def _sample(self, probs: torch.Tensor, logprobs: torch.Tensor, generation_config):
def _sample(self, probs: torch.Tensor, logprobs: torch.Tensor, generation_config: GenerationConfig):
if generation_config.num_beams == 1:
if generation_config.do_sample:
sample_tokens = multinomial_sample(generation_config, probs)
@ -240,7 +246,7 @@ class RequestHandler:
return sample_tokens
def mark_finished(self, sequence: Sequence, generation_config):
def mark_finished(self, sequence: Sequence, generation_config: GenerationConfig):
if (
sequence.output_token_id[-1] == generation_config.eos_id
or sequence.output_len >= generation_config.max_output_len
@ -250,7 +256,7 @@ class RequestHandler:
def check_unfinished_seqs(self) -> bool:
return self._has_waiting() or not self.running_list.is_empty()
def search_tokens(self, generation_config, logits):
def search_tokens(self, generation_config: GenerationConfig, logits):
"""
Sample tokens for finished requests.
"""

View File

@ -12,6 +12,11 @@ class FDIntermTensors(metaclass=SingletonMeta):
def __init__(self):
self._tensors_initialized = False
def _reset(self):
self._tensors_initialized = False
del self._mid_output
del self._mid_output_lse
@property
def is_initialized(self):
return self._tensors_initialized

View File

@ -72,7 +72,6 @@ def llama_model_forward(
"""
input_ids = batch.get_1D_inputs()
block_tables = batch.get_block_table_tensor()
sequence_lengths = batch.get_sequence_lengths()
batch_size = len(sequence_lengths)
kv_seq_len = sequence_lengths.max().item()

View File

@ -31,7 +31,6 @@ def check_inference_engine(use_engine=False, prompt_template=None):
.cuda()
.half()
)
model = model.eval()
inputs = [
@ -47,6 +46,7 @@ def check_inference_engine(use_engine=False, prompt_template=None):
if use_engine:
inference_config = InferenceConfig(max_output_len=output_len, prompt_template=prompt_template)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
assert inference_engine.generation_config.max_new_tokens == output_len
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k)