|
|
|
from typing import Any, Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.kernel.kernel_loader import FusedOptimizerLoader
|
|
|
|
from colossalai.utils import get_current_device, multi_tensor_applier
|
|
|
|
|
|
|
|
from .cpu_adam import CPUAdam
|
|
|
|
|
|
|
|
|
|
|
|
class HybridAdam(CPUAdam):
|
|
|
|
"""Implements Adam algorithm.
|
|
|
|
|
|
|
|
Supports parameters updating on both GPU and CPU, depending on the device of parameters.
|
|
|
|
But the parameters and gradients should on the same device:
|
|
|
|
* Parameters on CPU and gradients on CPU is allowed.
|
|
|
|
* Parameters on GPU and gradients on GPU is allowed.
|
|
|
|
* Parameters on GPU and gradients on CPU is **not** allowed.
|
|
|
|
|
|
|
|
`HybridAdam` requires CUDA extensions which can be built during installation or runtime.
|
|
|
|
|
|
|
|
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
|
|
|
|
|
|
|
|
* For parameters updating on CPU, it uses CPUAdam.
|
|
|
|
* For parameters updating on GPU, it uses FusedAdam.
|
|
|
|
* Hybrid precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
|
|
|
|
|
|
|
|
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
|
|
|
|
or ``torch.optim.Adam`` with ``adamw_mode=False``
|
|
|
|
|
|
|
|
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
model_params (iterable): iterable of parameters of dicts defining
|
|
|
|
parameter groups.
|
|
|
|
lr (float, optional): learning rate. (default: 1e-3)
|
|
|
|
betas (Tuple[float, float], optional): coefficients used for computing
|
|
|
|
running averages of gradient and its square. (default: (0.9, 0.999))
|
|
|
|
eps (float, optional): term added to the denominator to improve
|
|
|
|
numerical stability. (default: 1e-8)
|
|
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
|
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
|
|
|
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
|
|
|
(default: False) NOT SUPPORTED yet in CPUAdam!
|
|
|
|
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
|
|
|
|
True for decoupled weight decay(also known as AdamW) (default: True)
|
|
|
|
simd_log (boolean, optional): whether to show if you are using SIMD to
|
|
|
|
accelerate. (default: False)
|
|
|
|
nvme_offload_fraction (float, optional): Fraction of optimizer states to be offloaded to NVMe. Defaults to 0.0.
|
|
|
|
nvme_offload_dir (Optional[str], optional): Directory to save NVMe offload files.
|
|
|
|
If it's ``None``, a random temporary directory will be used. Defaults to None.
|
|
|
|
|
|
|
|
.. _Adam\: A Method for Stochastic Optimization:
|
|
|
|
https://arxiv.org/abs/1412.6980
|
|
|
|
.. _On the Convergence of Adam and Beyond:
|
|
|
|
https://openreview.net/forum?id=ryQu7f-RZ
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Number of fp32 shards for per parameter
|
|
|
|
# Param weight, grad, momentum and variance
|
|
|
|
num_fp32_shards_per_param = 4
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_params,
|
|
|
|
lr=1e-3,
|
|
|
|
bias_correction=True,
|
|
|
|
betas=(0.9, 0.999),
|
|
|
|
eps=1e-8,
|
|
|
|
weight_decay=0,
|
|
|
|
adamw_mode=True,
|
|
|
|
nvme_offload_fraction: float = 0.0,
|
|
|
|
nvme_offload_dir: Optional[str] = None,
|
|
|
|
**defaults: Any,
|
|
|
|
):
|
|
|
|
super().__init__(
|
|
|
|
model_params,
|
|
|
|
lr,
|
|
|
|
bias_correction,
|
|
|
|
betas,
|
|
|
|
eps,
|
|
|
|
weight_decay,
|
|
|
|
adamw_mode,
|
|
|
|
nvme_offload_fraction,
|
|
|
|
nvme_offload_dir,
|
|
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
fused_optim = FusedOptimizerLoader().load()
|
|
|
|
self.gpu_adam_op = fused_optim.multi_tensor_adam
|
|
|
|
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=get_current_device())
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def step(self, closure=None, div_scale: float = -1):
|
|
|
|
loss = None
|
|
|
|
if closure is not None:
|
|
|
|
with torch.enable_grad():
|
|
|
|
loss = closure()
|
|
|
|
|
|
|
|
self._pre_step("exp_avg", "exp_avg_sq")
|
|
|
|
for _, group in enumerate(self.param_groups):
|
|
|
|
g_l, p_l, m_l, v_l = [], [], [], []
|
|
|
|
group_step = 0
|
|
|
|
for _, p in enumerate(group["params"]):
|
|
|
|
if p.grad is None:
|
|
|
|
continue
|
|
|
|
|
|
|
|
state = self.state[p]
|
|
|
|
|
|
|
|
target_device = p.device
|
|
|
|
if len(state) == 0:
|
|
|
|
state["step"] = 0
|
|
|
|
# gradient momentums
|
|
|
|
state["exp_avg"] = torch.zeros_like(p, device=target_device)
|
|
|
|
# gradient variances
|
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p, device=target_device)
|
|
|
|
self._post_state_init(p)
|
|
|
|
|
|
|
|
state["step"] += 1
|
|
|
|
group_step = state["step"]
|
|
|
|
beta1, beta2 = group["betas"]
|
|
|
|
|
|
|
|
if target_device.type == "cpu" or target_device.type == "npu":
|
|
|
|
assert state["exp_avg"].device.type in ("cpu", "npu"), "exp_avg should stay on cpu"
|
|
|
|
assert state["exp_avg_sq"].device.type in ("cpu", "npu"), "exp_avg should stay on cpu"
|
|
|
|
self._pre_update(p, "exp_avg", "exp_avg_sq")
|
|
|
|
if p.grad.dtype is torch.bfloat16 or p.grad.device.type == "npu":
|
|
|
|
# cpu adam kernel does not support bf16 now
|
|
|
|
bias_correction1 = 1 - beta1 ** state["step"]
|
|
|
|
bias_correction2 = 1 - beta2 ** state["step"]
|
|
|
|
self.torch_adam_update(
|
|
|
|
p.data,
|
|
|
|
p.grad.data,
|
|
|
|
state["exp_avg"],
|
|
|
|
state["exp_avg_sq"],
|
|
|
|
group["lr"],
|
|
|
|
beta1,
|
|
|
|
beta2,
|
|
|
|
group["eps"],
|
|
|
|
group["weight_decay"],
|
|
|
|
bias_correction1,
|
|
|
|
bias_correction2,
|
|
|
|
self.adamw_mode,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
self.cpu_adam_op.step(
|
|
|
|
state["step"],
|
|
|
|
group["lr"],
|
|
|
|
beta1,
|
|
|
|
beta2,
|
|
|
|
group["eps"],
|
|
|
|
group["weight_decay"],
|
|
|
|
group["bias_correction"],
|
|
|
|
p.data,
|
|
|
|
p.grad.data,
|
|
|
|
state["exp_avg"],
|
|
|
|
state["exp_avg_sq"],
|
|
|
|
div_scale,
|
|
|
|
)
|
|
|
|
self._post_update(p, "exp_avg", "exp_avg_sq")
|
|
|
|
|
|
|
|
elif target_device.type == "cuda":
|
|
|
|
assert state["exp_avg"].device.type == "cuda", "exp_avg should stay on cuda"
|
|
|
|
assert state["exp_avg_sq"].device.type == "cuda", "exp_avg should stay on cuda"
|
|
|
|
|
|
|
|
# record the state by group and update at once
|
|
|
|
g_l.append(p.grad.data)
|
|
|
|
p_l.append(p.data)
|
|
|
|
m_l.append(state["exp_avg"])
|
|
|
|
v_l.append(state["exp_avg_sq"])
|
|
|
|
|
|
|
|
else:
|
|
|
|
raise RuntimeError
|
|
|
|
if len(g_l) > 0:
|
|
|
|
adamw_mode = 1 if self.adamw_mode else 0
|
|
|
|
bias_correction = 1 if group["bias_correction"] else 0
|
|
|
|
multi_tensor_applier(
|
|
|
|
self.gpu_adam_op,
|
|
|
|
self._dummy_overflow_buf,
|
|
|
|
[g_l, p_l, m_l, v_l],
|
|
|
|
group["lr"],
|
|
|
|
group["betas"][0],
|
|
|
|
group["betas"][1],
|
|
|
|
group["eps"],
|
|
|
|
group_step,
|
|
|
|
adamw_mode,
|
|
|
|
bias_correction,
|
|
|
|
group["weight_decay"],
|
|
|
|
div_scale,
|
|
|
|
)
|
|
|
|
self._post_step()
|
|
|
|
return loss
|