Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

193 lines
7.0 KiB

import torch
import torch.distributed as dist
import torch.nn.functional as F
from flash_attn import flash_attn_qkvpacked_func, flash_attn_varlen_qkvpacked_func
from torch.testing import assert_close
import colossalai
1 month ago
from colossalai.cluster import ProcessGroupMesh
from colossalai.shardformer.layer import AttnMaskType
from colossalai.shardformer.layer.attn import AttnMaskType, RingAttention
from colossalai.shardformer.layer.utils import split_batch_zigzag, split_varlen_zigzag
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
@parameterize("seq_len", [4096])
@parameterize("bs", [2])
@parameterize("nheads", [5])
@parameterize("d", [128])
@parameterize("dtype", [torch.bfloat16, torch.float16])
1 month ago
def check_ring_attn(seq_len, bs, nheads, d, dtype, inner_ring_size):
torch.cuda.manual_seed(2)
device = get_current_device()
1 month ago
sp_group = dist.group.WORLD
1 month ago
dp_size, pp_size, tp_size = 1, 1, 1
sp_size = dist.get_world_size()
1 month ago
sp_axis = 2
1 month ago
pg_mesh = ProcessGroupMesh(dp_size, pp_size, sp_size, tp_size)
# Some outliers may seem large, but our errors are still lower than
# than Megatron-LM context parallel's
# (https://github.com/NVIDIA/TransformerEngine/blob/33a3d02f81c56e6f7b542c09bfa86657078d57fb/tests/pytorch/fused_attn/run_fused_attn_with_cp.py#L215)
# and the original zigzag implementation's (https://github.com/zhuzilin/ring-flash-attention/tree/main)
atol = rtol = 7e-3
# Setup inputs
qkv = torch.randn(bs, seq_len, 3, nheads, d, device=device, dtype=dtype, requires_grad=True)
local_qkv = split_batch_zigzag(qkv, sp_group)
q, k, v = local_qkv.unbind(dim=-3)
q, k, v = [x.squeeze(2).detach().clone().transpose(1, 2) for x in (q, k, v)] # (B, nHeads, Sq, D)
q.requires_grad = k.requires_grad = v.requires_grad = True
# Ring attention vs single GPU
ring_out, ring_lse = RingAttention.attention(
1 month ago
q,
k,
v,
1 month ago
sp_axis,
1 month ago
AttnMaskType.CAUSAL,
return_softmax=True,
inner_ring_size=inner_ring_size,
pg_mesh=pg_mesh,
)
ring_out = ring_out.transpose(1, 2)
out, lse, _ = flash_attn_qkvpacked_func(
qkv, dropout_p=0.0, causal=True, window_size=(-1, -1), alibi_slopes=None, return_attn_probs=True
)
# Checkout out and softmax denominator
local_out = split_batch_zigzag(out, sp_group)
local_lse = split_batch_zigzag(lse, sp_group, seq_dim=-1)
local_lse = local_lse.transpose(1, 2).contiguous().view(-1, ring_lse.shape[-1]) # (B, nHeads, Sq) -> (T, nHeads)
assert_close(ring_lse, local_lse, atol=atol, rtol=rtol)
assert_close(ring_out, local_out, atol=atol, rtol=rtol)
# Check grads
ring_out.sum().backward()
out.sum().backward()
ring_dq, ring_dk, ring_dv = [x.transpose(1, 2) for x in (q.grad, k.grad, v.grad)]
dqkv = qkv.grad
local_dqkv = split_batch_zigzag(dqkv, sp_group)
assert_close(ring_dq, local_dqkv[:, :, 0], atol=atol, rtol=rtol)
assert_close(ring_dk, local_dqkv[:, :, 1], atol=atol, rtol=rtol)
assert_close(ring_dv, local_dqkv[:, :, 2], atol=atol, rtol=rtol)
if dist.get_rank() == 0:
print(
f"sp_size {dist.get_world_size()}, inner ring size {dist.get_world_size(RingAttention.INNER_RING_GROUP)} passed."
)
@parameterize("seqlen", [4096])
@parameterize("bs", [2])
@parameterize("nheads", [5])
@parameterize("d", [128])
@parameterize("dtype", [torch.bfloat16, torch.float16])
def check_packed_seq(seqlen, bs, nheads, d, dtype):
device = get_current_device()
sp_group = dist.group.WORLD
sp_size = dist.get_world_size()
1 month ago
sp_axis = 2
atol = rtol = 7e-3
torch.cuda.manual_seed(2)
# Prepare varlen attention mask
padding_mask = torch.ones((bs, seqlen), dtype=torch.int, device=device)
padding_mask[: bs // 2, (seqlen // 4) * 3 :] = 0
padding_mask[:, seqlen // 2 :] = 0
input_embeds = torch.randn(bs, seqlen, nheads, d, device=device, dtype=dtype, requires_grad=True)
# Forward
# out = ColoAttention.attention(q, k, v, **mask_info)
flat_input = input_embeds.view(-1, nheads, d)[padding_mask.flatten().nonzero().squeeze()]
qkv = torch.stack([flat_input] * 3, dim=1)
qkv.retain_grad()
input_embeds, mask_info, _ = RingAttention.prepare_varlen_batch(padding_mask, sp_group, input_embeds)
out, lse, _ = flash_attn_varlen_qkvpacked_func(
qkv,
mask_info["cu_seqlens"] * sp_size,
mask_info["max_seqlen"] * sp_size,
return_attn_probs=True,
causal=True,
# deterministic=True
)
# Test the splitting function
local_input = split_varlen_zigzag(
flat_input, mask_info["cu_seqlens"] * sp_size, sp_group, mask_info["max_seqlen"] * sp_size
)
assert (local_input == input_embeds.view(-1, nheads, d)[mask_info["valid_indices"]]).all()
del local_input, flat_input
q_ring, k_ring, v_ring = [input_embeds.clone().transpose(1, 2) for _ in range(3)]
q_ring.retain_grad()
k_ring.retain_grad()
v_ring.retain_grad()
ring_out, ring_lse = RingAttention.attention(
q_ring,
k_ring,
v_ring,
1 month ago
sp_axis,
**mask_info,
pad_output=False,
return_softmax=True,
1 month ago
pg_mesh=ProcessGroupMesh(1, 1, sp_size, 1),
# deterministic=True
)
ring_out = ring_out.transpose(1, 2).reshape(-1, nheads, d)
# Check output
lse = lse.transpose(0, 1)
out, lse = split_varlen_zigzag(
[out, lse], mask_info["cu_seqlens"] * sp_size, sp_group, mask_info["max_seqlen"] * sp_size
)
assert_close(lse, ring_lse, atol=atol, rtol=rtol)
assert_close(out, ring_out, atol=atol, rtol=rtol)
# Check grads
labels = torch.ones(out.shape[0], dtype=dtype, device=device)
F.mse_loss(out.sum((-2, -1)), labels).backward()
F.mse_loss(ring_out.sum((-2, -1)), labels[: ring_out.shape[0]]).backward()
dq, dk, dv = [
split_varlen_zigzag(
qkv.grad[:, i], mask_info["cu_seqlens"] * sp_size, sp_group, mask_info["max_seqlen"] * sp_size
)
for i in range(3)
]
dq_ring, dk_ring, dv_ring = [
x.transpose(1, 2).reshape(-1, nheads, d)[mask_info["valid_indices"]]
for x in (q_ring.grad, k_ring.grad, v_ring.grad)
]
assert_close(dq, dq_ring, atol=atol, rtol=rtol)
assert_close(dk, dk_ring, atol=atol, rtol=rtol)
assert_close(dv, dv_ring, atol=atol, rtol=rtol)
def launch_single_ring(rank, world_size, port):
colossalai.launch(rank, world_size, "localhost", port)
check_packed_seq()
1 month ago
check_ring_attn(inner_ring_size=None)
def launch_double_ring(rank, world_size, port):
colossalai.launch(rank, world_size, "localhost", port)
1 month ago
check_ring_attn(inner_ring_size=2)
@rerun_if_address_is_in_use()
@parameterize("world_size", [2])
def test_ring_attn(world_size):
spawn(launch_single_ring, nprocs=world_size)
@rerun_if_address_is_in_use()
1 month ago
@parameterize("world_size", [4])
def test_double_ring(world_size):
spawn(launch_double_ring, nprocs=world_size)
if __name__ == "__main__":
test_ring_attn()
test_double_ring()