mirror of https://github.com/hpcaitech/ColossalAI
fix
parent
3dc08c8a5a
commit
6be9862aaf
|
@ -1181,6 +1181,7 @@ class HybridParallelPlugin(PipelinePluginBase):
|
|||
fp8_communication=fp8_communication,
|
||||
inner_ring_size=inner_ring_size,
|
||||
pg_mesh=self.pg_mesh,
|
||||
sp_axis=self.sp_axis,
|
||||
)
|
||||
|
||||
self.amp_config = dict(
|
||||
|
|
|
@ -431,7 +431,7 @@ class RingAttention(torch.autograd.Function):
|
|||
INTER_RING_GROUP_COPY: dist.ProcessGroup = None
|
||||
|
||||
@staticmethod
|
||||
def get_double_ring_groups(sp_group, pg_mesh, inner_ring_size=None):
|
||||
def get_double_ring_groups(sp_axis, pg_mesh, inner_ring_size=None):
|
||||
"""
|
||||
Get 2D ring groups for the given process group. Generally, to avoid congestion, the inner ring size
|
||||
shouldn't be larger than the number of NICs on each node.
|
||||
|
@ -441,6 +441,9 @@ class RingAttention(torch.autograd.Function):
|
|||
Returns:
|
||||
Tuple[dist.ProcessGroup, dist.ProcessGroup]: Inner-ring process group and inter-ring process group.
|
||||
"""
|
||||
assert pg_mesh is not None, f"Error: The pg mesh is None! please check the process group initialization."
|
||||
|
||||
sp_group = pg_mesh.get_group_along_axis(sp_axis)
|
||||
sp_size = dist.get_world_size(sp_group)
|
||||
sp_rank = dist.get_rank(sp_group)
|
||||
|
||||
|
@ -496,6 +499,7 @@ class RingAttention(torch.autograd.Function):
|
|||
return_softmax=False,
|
||||
inner_ring_size=None,
|
||||
pg_mesh=None,
|
||||
sp_axis=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
|
@ -506,7 +510,7 @@ class RingAttention(torch.autograd.Function):
|
|||
q (torch.Tensor): Query tensor. Shape should be [B, nHeads, Sq, D]
|
||||
k (torch.Tensor): Key tensor. Shape should be [B, nHeads, Sq, Sq, D]
|
||||
v (torch.Tensor): Value tensor. Shape should be [B, nHeads, Sq, Sq, D]
|
||||
sp_group (Optional[dist.ProcessGroup]): Process group for sequence parallelism
|
||||
sp_axis (Optional[int]): Sp axis for the global pg mesh.
|
||||
sp_tream (torch.cuda.Stream): An different stream for output correction.
|
||||
cu_seqlens (Optional[torch.Tensor], optional): The cumulative sequence lengths
|
||||
of the sequences in the batch, used to index into q.
|
||||
|
@ -539,13 +543,13 @@ class RingAttention(torch.autograd.Function):
|
|||
attention_mask_type in RingAttention.SUPPORTED_MASK_TYPES
|
||||
), f"Mask type {attention_mask_type} is not supported yet."
|
||||
|
||||
assert pg_mesh is not None, f"Error: The pg mesh is None! please check the process group initialization."
|
||||
|
||||
clone_pg = lambda pg: dist.new_group(dist.get_process_group_ranks(pg))
|
||||
|
||||
if inner_ring_size != None:
|
||||
RingAttention.SP_GROUP = sp_group
|
||||
inner_ring_group, inter_ring_group = RingAttention.get_double_ring_groups(
|
||||
sp_group, pg_mesh, inner_ring_size
|
||||
)
|
||||
inner_ring_group, inter_ring_group = RingAttention.get_double_ring_groups(sp_axis, pg_mesh, inner_ring_size)
|
||||
RingAttention.INNER_RING_GROUP = inner_ring_group
|
||||
RingAttention.INTER_RING_GROUP = inter_ring_group
|
||||
else:
|
||||
|
|
|
@ -869,6 +869,7 @@ def get_gpt2_flash_attention_forward(shard_config: Optional[ShardConfig] = None)
|
|||
scale=scale,
|
||||
inner_ring_size=shard_config.inner_ring_size,
|
||||
pg_mesh=shard_config.pg_mesh,
|
||||
sp_axis=shard_config.sp_axis,
|
||||
)
|
||||
else:
|
||||
attn_output = ColoAttention.attention(query, key, value, **attention_mask, dropout_p=dropout_p, scale=scale)
|
||||
|
|
|
@ -572,6 +572,7 @@ def get_llama_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, s
|
|||
**attention_mask,
|
||||
inner_ring_size=shard_config.inner_ring_size,
|
||||
pg_mesh=shard_config.pg_mesh,
|
||||
sp_axis=shard_config.sp_axis,
|
||||
)
|
||||
|
||||
elif shard_config.enable_flash_attention:
|
||||
|
|
|
@ -51,6 +51,7 @@ class ShardConfig:
|
|||
extra_kwargs: Dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
# For ring attention
|
||||
sp_axis: Optional[int] = None
|
||||
pg_mesh: Optional[int] = None
|
||||
inner_ring_size: Optional[int] = None
|
||||
# for moe related
|
||||
|
|
|
@ -24,6 +24,7 @@ def check_ring_attn(seq_len, bs, nheads, d, dtype, inner_ring_size):
|
|||
sp_group = dist.group.WORLD
|
||||
dp_size, pp_size, tp_size = 1, 1, 1
|
||||
sp_size = dist.get_world_size()
|
||||
sp_axis = 2
|
||||
pg_mesh = ProcessGroupMesh(dp_size, pp_size, sp_size, tp_size)
|
||||
# Some outliers may seem large, but our errors are still lower than
|
||||
# than Megatron-LM context parallel's
|
||||
|
@ -40,7 +41,15 @@ def check_ring_attn(seq_len, bs, nheads, d, dtype, inner_ring_size):
|
|||
|
||||
# Ring attention vs single GPU
|
||||
ring_out, ring_lse = RingAttention.attention(
|
||||
q, k, v, sp_group, AttnMaskType.CAUSAL, return_softmax=True, inner_ring_size=inner_ring_size, pg_mesh=pg_mesh
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
sp_group,
|
||||
AttnMaskType.CAUSAL,
|
||||
return_softmax=True,
|
||||
inner_ring_size=inner_ring_size,
|
||||
pg_mesh=pg_mesh,
|
||||
sp_axis=sp_axis,
|
||||
)
|
||||
ring_out = ring_out.transpose(1, 2)
|
||||
out, lse, _ = flash_attn_qkvpacked_func(
|
||||
|
|
Loading…
Reference in New Issue