You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_fp8/test_fp8_linear.py

46 lines
1.6 KiB

import pytest
import torch
import torch.nn.functional as F
from torch.testing import assert_close
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import linear_fp8
from colossalai.utils import get_current_device
D_IN, D_OUT = 16, 32
B, S = 2, 64
DTYPE = torch.bfloat16
@pytest.mark.skipif(get_accelerator().get_device_capability()[0] < 9, reason="Test requires device capability >= 9.0")
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("use_batch", [True, False])
def test_fp8_linear(use_bias: bool, use_batch: bool):
# create tensors
w = torch.rand(D_OUT, D_IN, device=get_current_device(), dtype=DTYPE, requires_grad=True)
ref_w = w.clone().detach().requires_grad_()
if use_batch:
x_shape = (B, S, D_IN)
else:
x_shape = (S, D_IN)
x = torch.rand(x_shape, device=get_current_device(), dtype=DTYPE, requires_grad=True)
ref_x = x.clone().detach().requires_grad_()
if use_bias:
bias = torch.rand(D_OUT, device=get_current_device(), dtype=DTYPE, requires_grad=True)
ref_bias = bias.clone().detach().requires_grad_()
else:
bias = None
ref_bias = None
out = linear_fp8(x, w, bias)
assert out.shape == x_shape[:-1] + (D_OUT,)
out.sum().backward()
ref_out = F.linear(ref_x, ref_w, ref_bias)
ref_out.sum().backward()
assert_close(out, ref_out, rtol=0.2, atol=0.1)
assert_close(x.grad, ref_x.grad, rtol=0.2, atol=0.1)
assert_close(w.grad, ref_w.grad, rtol=0.2, atol=0.1)
if use_bias:
assert_close(bias.grad, ref_bias.grad, rtol=0.2, atol=0.1)