Browse Source

[fp8] add fp8 linear (#5967)

* [fp8] add fp8 linear

* [test] fix fp8 linear test condition

* [test] fix fp8 linear test condition

* [test] fix fp8 linear test condition
pull/5976/head
Hongxin Liu 4 months ago committed by GitHub
parent
commit
76ea16466f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 61
      colossalai/quantization/fp8.py
  2. 45
      tests/test_fp8/test_fp8_linear.py

61
colossalai/quantization/fp8.py

@ -1,4 +1,4 @@
from typing import Any
from typing import Any, Optional
import numpy as np
import torch
@ -415,3 +415,62 @@ def gather_fp8(output_list, input_, group=None, fp8_format="e5m2"):
output = tensor_list[i].view(fp8_type)
scale = scale_list[i]
output_list[i].copy_(cast_from_fp8(output, scale, input_type))
class _LinearFp8(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
x: torch.Tensor,
w: torch.Tensor,
bias: Optional[torch.Tensor],
) -> Any:
assert (
x.dtype in (torch.bfloat16, torch.float16) and x.dtype == w.dtype
), "Only float16 and bfloat16 are allowed."
if bias is not None:
assert bias.dtype == x.dtype, "Bias should have the same dtype as input."
# ensure x and w are row-major
assert x.is_contiguous() and w.is_contiguous(), "Input and weight should be contiguous."
ctx.x_shape = x.shape
ctx.has_bias = bias is not None
ctx.out_dtype = x.dtype
x = x.reshape(-1, x.shape[-1])
x_fp8, inv_scale_x = cast_to_fp8(x, fp8_format="e4m3")
w_fp8, inv_scale_w = cast_to_fp8(w, fp8_format="e4m3")
ctx.x_fp8 = x_fp8
ctx.w_fp8_t = w_fp8.t()
ctx.inv_scale_x = inv_scale_x
ctx.inv_scale_w = inv_scale_w
out = torch._scaled_mm(
x_fp8, ctx.w_fp8_t, bias=bias, out_dtype=ctx.out_dtype, scale_a=inv_scale_x, scale_b=inv_scale_w
)[0]
return out.reshape(*ctx.x_shape[:-1], w.shape[0])
@staticmethod
def backward(ctx: Any, out_grad) -> Any:
out_grad = out_grad.reshape(-1, out_grad.shape[-1])
out_grad_fp8, out_grad_scale = cast_to_fp8(out_grad, fp8_format="e5m2")
x_grad = torch._scaled_mm(
out_grad_fp8,
ctx.w_fp8_t.contiguous().t(),
out_dtype=ctx.out_dtype,
scale_a=out_grad_scale,
scale_b=ctx.inv_scale_w,
)[0]
w_grad = torch._scaled_mm(
out_grad_fp8.t().contiguous(),
ctx.x_fp8.t().contiguous().t(),
out_dtype=ctx.out_dtype,
scale_a=out_grad_scale,
scale_b=ctx.inv_scale_x,
)[0]
bias_grad = None
if ctx.has_bias:
bias_grad = out_grad.sum(0)
return x_grad.reshape(ctx.x_shape), w_grad, bias_grad
def linear_fp8(x: torch.Tensor, w: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
return _LinearFp8.apply(x, w, bias)

45
tests/test_fp8/test_fp8_linear.py

@ -0,0 +1,45 @@
import pytest
import torch
import torch.nn.functional as F
from torch.testing import assert_close
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import linear_fp8
from colossalai.utils import get_current_device
D_IN, D_OUT = 16, 32
B, S = 2, 64
DTYPE = torch.bfloat16
@pytest.mark.skipif(get_accelerator().get_device_capability()[0] < 9, reason="Test requires device capability >= 9.0")
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("use_batch", [True, False])
def test_fp8_linear(use_bias: bool, use_batch: bool):
# create tensors
w = torch.rand(D_OUT, D_IN, device=get_current_device(), dtype=DTYPE, requires_grad=True)
ref_w = w.clone().detach().requires_grad_()
if use_batch:
x_shape = (B, S, D_IN)
else:
x_shape = (S, D_IN)
x = torch.rand(x_shape, device=get_current_device(), dtype=DTYPE, requires_grad=True)
ref_x = x.clone().detach().requires_grad_()
if use_bias:
bias = torch.rand(D_OUT, device=get_current_device(), dtype=DTYPE, requires_grad=True)
ref_bias = bias.clone().detach().requires_grad_()
else:
bias = None
ref_bias = None
out = linear_fp8(x, w, bias)
assert out.shape == x_shape[:-1] + (D_OUT,)
out.sum().backward()
ref_out = F.linear(ref_x, ref_w, ref_bias)
ref_out.sum().backward()
assert_close(out, ref_out, rtol=0.2, atol=0.1)
assert_close(x.grad, ref_x.grad, rtol=0.2, atol=0.1)
assert_close(w.grad, ref_w.grad, rtol=0.2, atol=0.1)
if use_bias:
assert_close(bias.grad, ref_bias.grad, rtol=0.2, atol=0.1)
Loading…
Cancel
Save